### LG 3, 4 & 5 Trigonometry

- applying the Pythagorean Theorem
- solving problems using properties of similar polygons
- solving problems involving ratios

#### **NEW VOCABULARY**

- angle of inclination
- tangent ratio
- indirect measurement
- sine ratio
- cosine ratio
- angle of elevation
- angle of depression



angle of elevation

30°

20 m

angle of depression

The **angle of elevation** of an object above the horizontal is the angle between the horizontal and the line of sight from an observer.



# The Tangent Ratio SON CAN TOA

#### **The Tangent Ratio**

If  $\angle A$  is an acute angle in a right triangle, then

$$tan A = \frac{length of side opposite \angle A}{length of side adjacent to \angle A}$$



#### The Sine Ratio

If  $\angle A$  is an acute angle in a right triangle, then

$$\sin A = \frac{length \ of \ side \ opposite \angle A}{length \ of \ hypotenuse}$$

#### The Cosine Ratio

If ∠A is an acute angle in a right triangle, then

$$\cos A = \frac{length \ of \ side \ adjacent \ to \ \angle A}{length \ of \ hypotenuse}$$



#### **Determining the Tangent Ratios for Angles**

Determine tan D and tan F.



#### **CHECK YOUR UNDERSTANDING**

1. Determine tan X and tan Z.



[Answer:  $\tan X = 0.5$ ;  $\tan Z = 2$ ]



#### Example 2

#### Using the Tangent Ratio to Determine the Measure of an Angle

Determine the measures of ∠G and ∠J to the nearest tenth of a degree.



#### **CHECK YOUR UNDERSTANDING**

**2.** Determine the measures of  $\angle K$ and ∠N to the nearest tenth of a degree.



[Answer:  $\angle K \doteq 34.7^{\circ}$ ;  $\angle N \doteq 55.3^{\circ}$ ]

Using the Tangent Ratio to Solve a Problem  $PI_{NOINGANGIES}$ 

A 10-ft. ladder leans against the side of a building with its base 4 ft. from the wall.

What angle, to the nearest degree, does the ladder make with the ground?



## Determining the Length of a Side Opposite a Given Angle

Determine the length of AB to the nearest tenth of a centimetre.



#### **CHECK YOUR UNDERSTANDING**

**1.** Determine the length of XY to the nearest tenth of a centimetre.



[Answer: XY  $\doteq$  13.7 cm]

#### Example 2

#### Determining the Length of a Side Adjacent to a Given Angle

Determine the length of EF to the nearest tenth of a centimetre.



#### **CHECK YOUR UNDERSTANDING**

**2.** Determine the length of VX to the nearest tenth of a centimetre.



[Answer:  $VX \doteq 8.0 \text{ cm}$ ]

#### **Determining the Sine and Cosine of an Angle**

- a) In △DEF, identify the side opposite ∠D and the side adjacent to ∠D.
- b) Determine sin D and cos D to the nearest hundredth.



#### Example 2

Using Sine or Cosine to Determine the Measure of an Angle

Determine the measures of  $\angle G$  and  $\angle H$  to the nearest tenth of a degree.



#### **Using Sine or Cosine to Solve a Problem**

A water bomber is flying at an altitude of 5000 ft. The plane's radar shows that it is 8000 ft. from the target site. What is the **angle of elevation** of the plane measured from the target site, to the nearest degree?

#### **CHECK YOUR UNDERSTANDING**

3. An observer is sitting on a dock watching a float plane in Vancouver harbour. At a certain time, the plane is 300 m above the water and 430 m from the observer. Determine the angle of elevation of the plane measured from the observer, to the nearest degree.

[Answer: approximately 44°]

#### Using the Sine or Cosine Ratio to Determine the Length of a Leg

Determine the length of BC to the nearest tenth of a centimetre.



#### Example 2

Using Sine or Cosine to Determine the Length of the Hypotenuse

Determine the length of DE to the nearest tenth of a centimetre.



#### **Example 3**

#### **Solving an Indirect Measurement Problem**

A surveyor made the measurements shown in the diagram. How could the surveyor determine the distance from the transit to the survey pole to the nearest hundredth of a metre?



#### **Solving a Right Triangle Given Two Sides**

Solve  $\triangle$ XYZ. Give the measures to the nearest tenth.



#### Example 2

#### **Solving a Right Triangle Given One Side and One Acute Angle**

Solve this triangle. Give the measures to the nearest tenth where necessary.



#### **CHECK YOUR UNDERSTANDING**

**2.** Solve this triangle. Give the measures to the nearest tenth where necessary.



[Answers:  $\angle J = 51^{\circ}$ ; GH  $\doteq$  11.1 cm; HJ  $\doteq$  14.3 cm]

#### **Calculating a Side Length Using More than One Triangle**

Calculate the length of CD to the nearest tenth of a centimetre.



#### **CHECK YOUR UNDERSTANDING**

**1.** Calculate the length of XY to the nearest tenth of a centimetre.



[Answer: XY = 3.1 cm]

#### Solving a Problem with Triangles in the Same Plane

From the top of a 20-m high building, a surveyor measured the angle of elevation of the top of another building and the **angle of depression** of the base of that building.



The surveyor sketched this plan of her measurements. Determine the height of the taller building to the nearest tenth of a metre.

#### **CHECK YOUR UNDERSTANDING**

2. A surveyor stands at a window on the 9th floor of an office tower. He uses a clinometer to measure the angles of elevation and depression of the top and the base of a taller building. The surveyor sketches this plan of his measurements.

Determine the height of the taller building to the nearest tenth of a metre.

