LG \#10

 Radicals Part 1

Agenda:

Parts of a Radical

Example of a	Example of a
Mixed Radicals	Entire Radical

To convert mixed radical to entire radical:
Example: $2 \sqrt{5}$

1. take the coefficient 2 and square it2 $2=4$
2. then multiply the 4 by the radicands $\sqrt{5}$

$$
\sqrt{4 \times 5}=\sqrt{20}
$$

Try:
a) $4 \sqrt{3}$
b) $v^{3} \sqrt{v}$
c) $2 s^{2} \sqrt{3 s}$
d) $2 x^{2} \sqrt[3]{4 x}$

Example 2 Radicals in Simplest Form

(Express Entire Radicals as Mixed Radicals)
Example: $\sqrt{200}$

1. Use Prime Factorization
$\sqrt{(2 \cdot 2) \cdot 2 \cdot(5 \cdot 5)}$
2. Circle groups of 2 's
[because it's a Square Rdot and put them out as coefficients
$2 \cdot 5 \sqrt{2}=10 \sqrt{2}$

c) $\sqrt[3]{864 m^{4} n^{5}}$

Example 3

Compare \& Order Radicals

Order the following from least to greatest.

$$
\begin{array}{lllll}
8 \sqrt{3} & 4(13)^{\frac{1}{2}} & 14 & \sqrt{202} & 10 \sqrt{2}
\end{array}
$$

$1-$ Express each as an entire radical

$8 \sqrt{3}$ $=$ $=\sqrt{8^{2} \cdot 3}$ $=$ $=\sqrt{192}$	$4(13)^{\frac{1}{2}}$ $=\sqrt{4^{2} \cdot 13}$ $=\sqrt{208}$	14 $=\sqrt{14^{2}}$ $=\sqrt{196}$	$\sqrt{202}$ $=\sqrt{202}$ $=\sqrt{202}$	$10 \sqrt{2}$ $=\sqrt{10^{2} \cdot 2}$ $=\sqrt{200}$

2 -n Now, compare and order the radicands $\sqrt{192}, \sqrt{196}, \sqrt{200}, \sqrt{202}, \sqrt{208}$

Try: Order from least to greatest
$5,3 \sqrt{3}, 2 \sqrt{6}, \sqrt{23}$

Example 4
 Add \& Subtract Radicals

Simplify and combine like terms.
a) $\sqrt{50}+3 \sqrt{2}$
b) $\sqrt{72 x}-\sqrt{18 x}$

1 s+Use your simplifying radical skills [see Example 2]
a) $\sqrt{50}+3 \sqrt{2}$
b) $\sqrt{72 x}-\sqrt{18 x}$
$=\sqrt{5 \cdot 5 \cdot 2}+3 \sqrt{2}$
$=\sqrt{6 \cdot 6 \cdot 2 \cdot x}-\sqrt{3 \cdot 3 \cdot 2 \cdot x}$
$=5 \sqrt{2}+3 \sqrt{2}$
$=6 \sqrt{2 x}-3 \sqrt{2 x}$
$=8 \sqrt{2}$
$=3 \sqrt{2 x}$

Try: Simplify and combine like terms.

a) $-3 \sqrt{24}+\sqrt{6}$
b) $\sqrt{20 x}-3 \sqrt{45 x}$

Topic
 Example 1

Multiplying Radicals

Multiply, then simplify where possible.
a) $(2 \sqrt{3})(-5 \sqrt{6})$
b) $(8 \sqrt{2}-5)(9 \sqrt{5}+6 \sqrt{10})$

1 st Use distributive property
$2(-5) \sqrt{3 \cdot 6}$

$$
(8 \sqrt{2}-5)(9 \sqrt{5}+6 \sqrt{10})
$$

$-10 \sqrt{18}$ $72 \sqrt{10}+48 \sqrt{20}-45 \sqrt{5}-30 \sqrt{10}$

2 ndSimplify the radicals
$=-10 \sqrt{3 \cdot 3 \cdot 2}$
$=72 \sqrt{10}+48 \sqrt{2 \cdot 2 \cdot 5}-45 \sqrt{5}-30 \sqrt{10}$
$=-30 \sqrt{2}$
$=72 \sqrt{10}+96 \sqrt{5}-45 \sqrt{5}-30 \sqrt{10}$

3 radollect like radicals
$=-30 \sqrt{2}$
$=42 \sqrt{10}+51 \sqrt{5}$
Try:
a) $7 \sqrt{3}(5 \sqrt{5}-6 \sqrt{3})$
b) $9 \sqrt[3]{2 m}(\sqrt[3]{4 m}+7 \sqrt[3]{28})$
c) $(4 \sqrt{2}+3)(\sqrt{7}-5 \sqrt{14})$

Example 2 Apply Radical Multiplication

A equilateral triangle placed inside a square is shown below. The area of the square is $32 . \mathrm{cm}$

a) Find the exact perimeter of the triangle?
$A=s^{2}$ Since the base of the triangle is a side of the square - we can use the Area of a
$32=s^{2}$ Square formula. $A=s$
$\sqrt{32}=s$
$\sqrt{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}$
Since all sides are the equal - we can now
$=4 \sqrt{2}$
$\Rightarrow 3(4 \sqrt{2})=12 \sqrt{2} \mathrm{~cm}$
\qquad

Example 2 con' \dagger

A equilateral triangle placed inside a square is shown below. The area of the square is $32 . \mathrm{cm}$

b) Find the exact height of the triangle?
(:) We need to use pythagorus theorem to find the height.
\rightarrow one side of the triangle is $4 \sqrt{2}$

$$
\begin{aligned}
& \rightarrow \text { the base is half of the side so: } \\
& a=\sqrt{c^{2}-b^{2}} \\
& a=\sqrt{(4 \sqrt{2})^{2}-(2 \sqrt{2})^{2}} \\
& a=\sqrt{32-8} \\
& a=\sqrt{24} \Rightarrow h t=2 \sqrt{6}
\end{aligned}
$$

Example 2 con'†

A equilateral triangle placed inside a square is shown below. The area of the square is $32 . \mathrm{cm}$

c) Find the exact area of the triangle?
(:) We now know the base is $4 \sqrt{2}$ and the height is $2 \sqrt{6}$. Use the formula:

$$
\begin{aligned}
& A=\frac{b \cdot h}{2} \\
& =\frac{(4 \sqrt{2})(2 \sqrt{6})}{2}=\frac{8 \sqrt{12}}{2} \\
& =4 \sqrt{12} \\
& \text { Area }=8 \sqrt{3}
\end{aligned}
$$

Try: An isosceles triangle has a base of $\sqrt{2 \mathrm{~m}}$. Each of the equal sides is $3 \sqrt{7} \mathrm{~m}$ long. What is the exact area of the triangle?

Example 3

Divide Radicals
There are three types you'll will run into:

Try:

a) $\frac{3 \sqrt{24 x^{3}}}{\sqrt{3 x}}$
b) $\frac{-6}{2 \sqrt[3]{9}}$
c) $\frac{6}{\sqrt{4 b}+1}$

