LG \#12

Rationals
Part 1

Agenda:

GRAPH RATIONAL

FUNCTIONS

Whenever you use a rational expression, you must identify any values that must be excluded or considered non-permissible values

* Non-permissible values are values that make the denominator zero

Topic 1 Example 1

Determine Non-Permissible Values

For each rational expression, determine all non-permissible values.
a) $\frac{-2 x^{3}}{5 y^{2} z}$
b) $\frac{4 m}{m(3 m-1)}$
c) $\frac{5 x+2}{x^{2}+5 x+6}$
$1 s t$ take the denominator and make it equal zero.

$$
5 y=0 ; z=0 \quad m=0 ; 3 m-1=0 \quad x+5 x+6=0
$$

$2 n d$ then solve equation to find non-permissible values.

$$
\begin{aligned}
& y=0 ; z=0 \\
& m=0 ; m=\frac{1}{3} \\
& \begin{array}{c}
(x+2)(x+3)=0 \\
x=-2 ; x=-3
\end{array}
\end{aligned}
$$

\qquad
\qquad \longrightarrow

Example 2

Simplify a Rational Expression

$\dot{\sim}$ When simplifying a rational expression, always state the non-permissible values.
Simplify and state the non-permissible values.

$$
\frac{3 x-6}{x^{2}+x-6}
$$

1st - determine any non-permissible values

$$
x^{2}+x-6=0 \Rightarrow(x+3)(x-2)=0 \Rightarrow x=-3,-2 \Rightarrow x \neq-3,2
$$

2nd - factor to cancel out equivalent expressions

$$
\frac{3 x-6}{x^{2}+x-6}=\frac{3(x-2)}{(x+3)(x-2)}=\frac{3}{x+3} ; x \neq-3,2
$$

Example 3

Rational Expressions With Pairs of

Non-Permissible Values
Simplify and determine non-permissible values.

$$
\frac{16 x^{2}-9 y^{2}}{8 x-6 y}
$$

To simplify:
1 - factor

$$
\frac{(4 x+3 y)(4 x-3 y)}{2(4 x-3 y)}
$$

$2-n$ then look to cancel out equivalent expression

$$
\frac{(4 x+3 y)(4 x-3 y)}{2(4 x-3 y)}=\frac{(4 x+3 y)}{2}
$$

Watch out for the "Opposite Rule"

Simplify and state the non-permissibles.

$$
\frac{x^{2}+3 x-10}{2-x}
$$

Try: Simplify and determine non-permissible values. $2 m^{2}+6 m n-36 n^{2}$ $6 m+36 n$

Topic
 Example 1

Multiplying Rational Expressions

Multiply and write your answer in simplest form. Identify all non-permissible values.

$$
\frac{x^{2}-x-12}{x^{2}-9} \times \frac{x^{2}-4 x+3}{x^{2}-4 x}
$$

1 st factor

$$
\begin{aligned}
& =\frac{(x-4)(x+3)}{(x-3)(x+3)} \times \frac{(x-1)(x-3)}{x(x-4)} \\
& =\frac{(x-4)(x+3)(x-1)(x-3)}{(x-3)(x+3) x(x-4)} \text { non-permissible }
\end{aligned}
$$

2 na look to cancel out equivalent expression, then state all non-permissible values

$$
=\frac{(x-4)(x+3)(x-1)(x-3)}{(x-3)(x+3) x(x-4)}=\frac{x-1}{x} ; \quad x \neq-3,0,3,4
$$

Try: Multiply and write your answer in simplest form. Identify all non-permissible values.
a) $\frac{2 a-10}{a^{2}-4 a-5} \times \frac{a^{2}-1}{4 a-4}$
b) $\frac{2-x}{m^{2}} \times \frac{2 m}{3 n-6}$

Example 2
 Divide Rational Expressions

Dividing Rational Expressions is pretty much the same as multiplying, except you must first reciprocate (flip) the rational expression that comes after the \div sign.

Determine the quotient in simplest form.
Identify all non-permissible values.

$$
\begin{gathered}
\frac{b^{2}-4}{6} \div \frac{b-2}{3} \\
=\frac{(b-2)(b+2)}{6_{2}} \times \frac{13}{b-2}=\frac{b+2}{2} ; b \neq 2
\end{gathered}
$$

Try: Determine the quotient in simplest form.
Identify all non-permissible values.

$$
\frac{c^{2}-6 c-7}{c^{2}-49} \div \frac{c^{2}+8 c+7}{c^{2}+7 c}
$$

Example 3
 Multiply and Divide Rational Expressions

Now it is time to put both your multiplying and dividing skills together to simplify a Rational Expression.

Try:

Simplify. What are the non- permissible values?

$$
\frac{3 x+12}{3 x^{2}-5 x-12} \div \frac{12}{3 x+4} \times \frac{2 x-6}{x+4}
$$

