LG \#15

Absolute Value

Part 2 - Equations

Agenda:

Topic 1

Example 1

Solve an Absolute Value Equation

Solve $|x-3|=7$
Method 1: Use Algebra
Remember that an Absolute Value has Two Cases:

$$
|x-3|= \begin{cases}x-3 & \| \text { positive case } \\ -(x-3)\end{cases}
$$

\qquad

Example 2

Solve an Absolute Value Problem

A TV network receives a rating at the end of each month which reflects the viewers approval. For the month of January, NBC received a rating of 78.4\% with an absolute error of $\pm 5 \%$. Write and solve an absolute value equation for the maximum and minimum rating, r, for NBC's January ratings.

Equation: $|r-78.4|=5$

$$
\begin{array}{lc}
\text { positive case } & \text { negative case } \\
r-78.4=5 & -(r-78.4)=5 \\
r=83.4 \% & r-78.4=-5 \\
& r=73.4 \%
\end{array}
$$

Example 3

Absolute Value Equation With an

Extraneous Solution
Example: Solve by algebra $|x-4|=2 x+1$
positive case
negative case
$x-4=2 x+1$
$-x+4=2 x+1$
$x=-5$
$-3 x=-3$
Extraneous

Verify the solutions by substitution
Left side
Right side
Left side Right side
$x-4=2 x+1$
$|(-5)-4|=2(-5)+1$
$x-4=2 x+1$
$\begin{aligned}|-9| & =-10+1 \\ 9 & =-9 X\end{aligned}$
$|(1)-4|=2(1)+1$
$\begin{aligned}-3 & = \\ 3 & =3+1\end{aligned}$

When you check with your graphing calculator you will notice that the curve does not intersect at -5 therefore $x=-5$ is extraneous. You must indicate this!
The only thing you will put in the solution box is

$$
x=1
$$

Example 4
 Absolute Value Equation With
 No Solution

Example: Solve $|3 x-4|+12=9$
1 st- Isolate the Radical $|3 x-4|=-3$
Since the absolute value of a number is always greater than or equal to zero, you can see that the left side will be zero or greater and the right side is negative. Thus, this equation has NO SOLUTION.

Example 5

Solve an Absolute Value Equation

Involving a Quadratic Expression

Example: Solve $\left|x^{2}-3 x\right|=10$

Positive Case

$$
\begin{aligned}
& x^{2}-3 x=10 \\
& x^{2}-3 x-10=0
\end{aligned}
$$

Now factor or use your Quad. program. $x=-2, x=5$

Check by Graphing Calculator

Negative Case

$$
\begin{aligned}
& -\left(x^{2}-3 x\right)=10 \\
& x^{2}-3 x=-10 \\
& x^{2}-3 x+10=0
\end{aligned}
$$

Now factor or use your Quad. program.
 Non-Real Numbers
\qquad
\qquad \longrightarrow

Try:

1. Solve algebraically and check graphically $|6-x|=2$
2. A computerized process controls the amount of fish that is packaged in a specific size of can. The computer program sets the ideal mass at 170 g but allows a tolerance of $\pm 6 \mathrm{~g}$. Solve an absolute value equation for the maximum and minimum mass, m, of fish in this size of can.
\qquad
3. Solve algebraically and check graphically $|x+5|=4 x-1$
4. Solve algebraically and check graphically $\left|x^{2}-3 x\right|=2$

Topic 2

Reciprocal Functions: $y=\frac{1}{f(x)}$
In Invariant points: points that are the same on both $y=f(x)$ and $y=\frac{1}{f(x)}$

Example 1

Graph the Reciprocal of a Linear Function

Consider $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+5$.
a) Determine its reciprocal function $y=\frac{1}{f(x)}$
b) Determine the equation of the vertical asymptote of the reciprocal function.
c) Graph the function $y=f(x)$ and its reciprocal function $y=\frac{1}{f(x)}$.

Solution

$$
\begin{aligned}
f(x) & =2 x+5 \\
\text { a) } y & =\frac{1}{2 x+5}
\end{aligned}
$$

b) $2 x+5=0$

$$
2 x=-5
$$

$$
x=\frac{-5}{2} \text { or }-2.5 \text { Vertical Asymptote }
$$

c) Graph (see next page)

Steps to Graphing:
1 st draw the $y=f(x) \quad \mathrm{y}=2 \mathrm{x}+5$

$$
y=\frac{1}{2 x+5}
$$

$2 n d$ draw the vertical asymptote
3 rad draw the invariant lines $y=1$ and $y=-1$
$4+m$ mark the invariant points
$5+n$ from these invariant points "swing up to their reciprocal points

Try:

Consider: 1. $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-6$ and 2. $\mathrm{f}(\mathrm{x})=\mathrm{x}+\mathrm{x}-6$
a) Determine its reciprocal function $y=\frac{1}{f(x)}$
b) Determine the equation of the vertical asymptote of the reciprocal function.
c) Graph the function $y=f(x)$ and its reciprocal function $y=\frac{1}{f(x)}$.

Example 2

Graph $y=f\left(\right.$ (Given the Graph of $\quad y=\frac{1}{f(x)}$
a) Sketch the graph for $y=f(x)$.
b) Determine the equation for $y=f(x)$.

To determine the equation:

- you can see the y-intercept $=(-6)$
- the slope $m=\frac{r i s e}{r u n}=\frac{6}{3}=2$
- use the slope/y-intercept form $y=m x+b$

Solution: $y=\frac{1}{2 x-6}$

```
Try:
Graph \(y=f(x)\) Given the Graph of \(y=\frac{1}{f(x)}\)
```

a) Sketch the graph for $y=f(x)$.
b) Determine the equation for $y=f(x)$.

Try:

Graph $y=f(x)$ Given the Graph of $y=\frac{1}{f(x)}$
a) Sketch the graph for $y=f(x)$.
b) Determine the equation for $y=f(x)$.

