## LG \#17

## Inequalities

Agenda:

Inequality Reference Table

| Types | Describtion | Graph Li |  | Shading | Graph. Calc. Feature |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $>$ | Greater than | Broken | ----* | Above line | $\nabla$ |
| $\geq$ | Greater than and = | solid | $\longrightarrow$ | Above line | $\nabla$ |
| $<$ | Less than | Broken | ---- | Below line | , |
| $\leq$ | Less than and = | solid |  | Below line | - |
| Topic 1 |  | 21 |  |  | \% |

Method 1: Graphing Calculator

- put into $y=$ form $\longrightarrow y \geq-2 x+3$
- type ${ }^{\star}$ y1 $=-2 x+3$,
- then hit GRaph
- hit 2nd Graph to get two points to plot on graph paper
- draw the solid line between them


The triangles above give you the correct shading. They go in front of the $\mathrm{Y} 1=$.
You hit the ENTER key as many times until you see the appropriate one.

The calculator will not indicate if the line is solid or broken.

Method 2: Draw using Slope-Intercept Form


- plot y-intercept
- now from that point, get another point by using the slope: drop 2, run right 1
- connect the two points with asolid line and shade above the line.


$$
\dot{x}
$$

b) Determine if the point $(0,1)$ is a part of the solution.

No. The point does not lie in the shaded region.

## Method 3: Draw using the Intercepts $2 x+y \geq 3$

For $x=0$
$2(0)+y=3$
$y=3$

For $y=0$
$2 x+(Q)=3$
$x=1.5$

- plot the points ( 0,3 ) and (1.5, 0 )
- connect the two points with asolid line and shade above the line.


Try: 1a) Graph $4 x+2 y \geq 10$
b) Determine if the point ( 1,5 ) is a part of the solution.


2a) Graph $5 x-20 y<0$
b) Determine if the point $(-4,-1)$ is a part of the solution.


## Example 2

## Write an Inequality Equation

## Given Its Graph

Write an inequality equation to represent the graph.


- write the equation in slopeintercept form, $y=m x+b$
- y-intercept is 2. So, $b=2$
- from that point $\rightarrow$ use $\frac{\text { rise }}{\text { run }}$
to get slope $m=\frac{2}{3}$ to get slope $m=\frac{2}{3}$
- because the line is broke it's either < or>. Since the shading is going down it's < . The inequality equation is:

$$
y<\frac{2}{3} x+2
$$

Try: Write an inequality equation to represent the graph.


## Example 3

Write and Solve an Inequality
Suppose that you are constructing a tabletop using aluminum and glass. The most that you can spend on materials is $\$ 50$. Laminated safety glass cost $\$ 60 / \mathrm{m}$, and aluminum costs $\$ 1.75 / \mathrm{ft}$. You can choose the dimensions of the table and the amount of each material used. Find all possible combinations of materials sufficient to make the tabletop.

## Solution

- let $x$ represent the area of glass used and $y$ represent the length of aluminum used. $\quad 60 x+1.75 y \leq 50$
- solve for $y$ in terms of $x$

$$
\begin{aligned}
1.75 y & \leq-60 x+50 \\
y & \leq \frac{-60 x}{1.75}+\frac{50}{1.75}
\end{aligned}
$$

- graph using your graphing calculator


## Solve Quadratic Inequalities

## Solve: a) $x-2 x-3 \leq 0$

## Solution:

- graph the function $\mathrm{f}(\mathrm{x}) \neq-\bar{x}=3$
- indicate the rootst -intercepts).
- highlight the part(s) of the function that are below zero.

The highlighted part is between -1 and 3 , thus, the solution is:

$$
\{x \mid-1 \leq x \leq 3, x \in R\}
$$


b) $x+x-6>0$

Solution:

- graph the function $f(x)=x+6=6$
- indicate the roots ( -intercept).

- highlight the part(s) of the function that are below zero.

The highlighted parts are going to the lesser numbers from -3 $[x<-3]$, and to the greater numbers
from 2 [ $x>2$ ].
Thus, the solution is:

$$
\{x \mid x<-3 \text { or } x>2, x \in R\}
$$


c) $2 x-72 x>3$

Same steps as previous two questions, however, you must move the 3 to the left side of equation so you have $\mathrm{f}(\mathrm{x})>\mathbf{0}$. $2 x-7 x-3>0$

Hint: Use Graph. Calc. to find the roots.


Try: Solve:
a) $-x+3 x+10<0$
b) $x \quad-4>10$


c) A baseball is thrown from a height of 1.5 m . The inequality $-4.02+1 t 7+15>0$ models the time, $t$, in seconds, that the baseball is in flight. During what time interval is the baseball in flight?

## Topic 3 Example 1 Graph a Quadratic Inequality in Two Variables

a) Graph $y>-2(x-3)+1$

- graph the parabola

- since the inequality symbol is>, draw the parabola as a broken line - test a point $(0,0)$ to show where the shading is - within or outside the parabola

| Left Side | Right Side |
| ---: | :--- |
| $y$ | $=-2(-3)+1$ |
| $=0$ | $=-2(0-3)+1$ |
|  | $=-18+1$ |
|  | $=-17$ |

- the point $(0,0)$ satisfies the inequality, so shade the region outside the parabola
$\qquad$
b) Determine if the point $(2,-4)$ is a solution.


Solution:
No. The point $(2,-4)$ is not in the shaded region.

Try: a) Graph $y>(x-4)^{2}-2$
b) Determine if the point $(2,1)$ is a solution.


## Example 2 <br> Write an Inequality Equation

Write an inequality equation to describe the graph.

- select two points on the parabola, the vertex $(-3,1)$, a point $(-2,-5)$
- use $y=a(x-p)+q$ to get the equation $-5=a(-2+3)+1$ $-5=a+1$
$-6=a$
$y=-6(x+3)+1$
- broken line indicates< or>
- pick a point in the shaded region $(-3,0)$

$$
\begin{aligned}
& y=-6(x+3)+1 \\
& 0=-6(-3+3)+1 \\
& 0 \neq 1
\end{aligned}
$$



Solution: $y<-6(x+3)+1=$
This is the correct inequality sign.

Try:
Write an inequality equation to describe the graph.


