

Agenda:

Trig. Review
 Basic
 Trigonometry

To find a side:

1. By Pythagorouis $\circ a^{2}+b^{2}=c^{2}$

Example:

1. Write formula $a+b=$ and 2 substitute $3+4=c^{2}$
2. Solve $9+16=c$

$$
\begin{array}{ll}
& 25=c \\
=c \quad & \sqrt{25} \\
& 5=c
\end{array}
$$

2. By Trigonometry. O SOH CAH TOA Example:

3. Determine the correct ratio (sin, cos or tan) - here we use tan because we are using the opposite and adjacent sides.
4. Write out ratio:

$$
\tan =\frac{o p p}{a d j}
$$

3. Substitute:

$$
\text { or } \quad \tan 30^{\circ}=\frac{x}{20}
$$

4. Cross multiply to solve:

$$
x=\tan 30^{\circ} \times 20=11.6 \mathrm{~cm}
$$

To find an Angle

ry. \circ SOHCAH TOA

1. By Trigonometry ${ }^{\circ}$ - 0 Example: Find angle B

2. Determine the correct ratio (\sin , \cos or tan) - here we use tan because we are using the opposite and adjacent sides.
3. Write out ratio: $\tan =\frac{o p p}{a d j}$
4. Substitute: $x=\tan B=\frac{5}{10}=0.5$
5. Solve using tan: $\quad B=\tan ^{-1}(0.5)=26.6^{\circ}$

2. Using the Sum of Angles in a Triangle

 Example: Find angle x

1. All 3 angles sum to 180° - we know 2 of the angles are 30° and 90°
2. $x=180-90-30=60^{\circ}$

Try: Find the indicated side or angle

a)

b)

Topic 1 Angles in Standard Position

An angle is in standard position when:

1. it's vertex is at the origin and
2. the initial arm is on the positive x-axis
*Angles in standard position are always measured counter-clockwise from the initial arm

Example 1

Sketch an Angle in Standard Postion, $0^{\circ} \leq \theta \leq 360^{\circ}$
Example: a) 170°

Try: Sketch each Angle in Standard Postion, and state the quadrant in which the terminal arm lies.
a) 37°
b)

c) 320°
245°

Example 1 - Part b

Directions: Are defined as a measure either east or west of north or south

Example: Show $\mathrm{N} 40^{\circ} \mathrm{W}$ as an angle in standard position

1. Start at North and go 40° toward west

Reference Angles

A Reference angle $\left(\theta_{R}\right)$ is:

1. the acute ($\leq 90^{\circ}$) angle between the terminal arm and the -axis
2. always positive

$\theta_{R}=\theta-180^{\circ}$

Example 2

Determine a Reference Angle

Example: $\theta=145^{\circ}$

1. sketch angle
2. place the reference angle - find the shortest distance back to the x-axis
3. calculate reference angle
$\theta_{R}=180^{\circ}-\theta$
$\theta_{R}=180^{\circ}-145^{\circ}$
$\theta_{R}=35^{\circ}$

Try: Determine the Reference Angle for each angle in standard postition
a) 79°
b) 243°
c) 317°

Example 3

Determine the Angle in Standard Position When

Example (part 1):
 Reflected

Determine the angle in standard position when an angle of 30° is reflected:
a) in they-axis

1. the reference angle is the same as $\theta, 30^{\circ}$, but is across the -axis
2. calculate the angle
$\theta=180^{\circ}-\theta_{R}$
$\theta=180^{\circ}-30^{\circ}$
$\theta=150^{\circ}$

Example 3 cont.

Determine the Angle in Standard Position

Example (part 2):
Determine the angle in standard position when an angle of 30° is reflected:
b) in the x-axis

1. the reference angle is the same
as $\theta, 30^{\circ}$, but is across the -axis
2. calculate the angle
$\theta=360^{\circ}-\theta_{R}$
$\theta=360^{\circ}-30^{\circ}$
$\theta=330^{\circ}$

Example 3 cont.

Determine the Angle in Standard Position

Example (part 3):

Determine the angle in standard position when an angle of 30° is reflected:
c) in they-axis \& then in the -axis

1. the reference angle is the same as $\theta, 30^{\circ}$, but is across both axes
2. calculate the angle
$\theta=180^{\circ}+\theta_{R}$
$\theta=180^{\circ}+30^{\circ}$
$\theta=210^{\circ}$

Try: Determine the Angle in Standard Position When an angle of 45° is Reflected:

a) in the x-axis
b) in the -axis
c) in the -axis \& the y-axis

Special Triangles

For right triangles of $30^{\circ}, 45^{\circ}$ and 60°, you can find exact values of trig. ratios using 2 special triangles

$\sin 45^{\circ}=\frac{1}{\sqrt{2}}$

$\cos 45^{\circ}=\frac{1}{\sqrt{2}}$
$\tan 45^{\circ}=\frac{1}{1}=1$

Example 4

Finding an Exact Distance

Example: Determine the exact length of side $A C$.

1. use the $30,60,90$ special triangle
2. determine which ratio to use
$\tan 60=\frac{45}{A C}$
3. substitute
$\frac{\sqrt{3}}{1}=\frac{45}{A C}$
4. solve (cross multiply)

$$
A C=\frac{45}{\sqrt{3}}=\frac{45 \sqrt{3}}{3}=15 \sqrt{3}
$$

Try: Find the exact length of $A B$ in each of the

 triangles.a)

CAST Rule

The CAST rule tells you which trigonometric ratios are positive for each quadrant.

1. All (Sine, Cosine \& Tangent) are positive in quadrant I
2. Only Sine is positive in quadrant II
(so cosine and Tangent are negative) etc.

Topic 2 Example 1

Trigonometric Ratios of Any Angle

Example: The point $P(-4,3)$ lies on the terminal arm of an angle, θ, in standard position. Determine the exact ratios for $\sin \theta$, $\cos \theta$, and tan.

1. plot point \& sketch triangle
2. use pythagorus to find
$a+b=c=$
2
$\begin{array}{cc}3+2(-4)=c & 2 \\ 25=c & =\end{array}$
$5=c$
3. write trig. ratios
$\sin \theta=\frac{3}{5} \quad \cos \theta=-\frac{4}{5} \quad \tan \theta=-\frac{3}{4}$

Try: The point P is on the terminal arm of angle θ in standard position. Draw a diagram and calculate $\sin \theta, \tan \theta$, and $\cos \theta$.
a) $P(5,2)$
b) $P(6,-5)$

Example 2

Determine the Exact Value of a Trigonometric Ratio Example: Determine the exact value of $\cos 150$

1. sketch angle in standard pos.
2. calculate reference angle

$$
\begin{aligned}
& \theta_{R}=180^{\circ}-\theta \\
& \theta_{R}=180^{\circ}-150^{\circ} \\
& \theta_{R}=30^{\circ}
\end{aligned}
$$

3. sketch special triangle
4. write cos ratio

$$
\cos \theta=-\frac{\sqrt{3}}{2}
$$

Try: Determine the exact value of each of the following:

a) $\cos 45^{\circ}$
b) $\tan 315^{\circ}$

Example 3

Determine Trigonometric Ratios

Example: $\boldsymbol{\theta}$ is an angle in standard position with terminal arm in quadrant III and $\cos \theta=-\frac{5}{6}$. Find the exact values of $\sin \theta$ and $\tan \theta$.

1. sketch a diagram

2. find y using pythagorus

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& (-5)^{2}+y^{2}=6^{2} \\
& 25+y^{2}=36 \\
& y=\sqrt{36-25}=\sqrt{11}
\end{aligned}
$$

3. write ratios
$\sin \theta=-\frac{\sqrt{11}}{6} \quad \tan \theta=\frac{\sqrt{11}}{5}$

Try: θ is an angle in standard position with terminal arm in quadrant II and $\sin \theta=3 / 5$. Find the exact value of $\cos \theta$ and $\tan \theta$.

Example 4

Determine Trigonometric Ratios of Quadrantal Angles

Example: Determine the values of $\sin \theta, \cos \theta$ and $\tan \theta$ for quadrantal angles of $0^{\circ}, 90^{\circ}, 180^{\circ}$ and 270°

1. Sketch a diagram
2. Place 4 points, each 1 unit from the origin
3. The x-coordinate tells you the cosine \& the y-coordinate the sine
4. Find the tangent using Tan $=\operatorname{Sin} / \operatorname{Cos}$
\qquad

Example 5

Find Angles Given the Exact Sine, Cosine or Tangent

Example: Solve for θ
a) $\sin \theta=0.5,0^{\circ} \leq \theta<360^{\circ}$

1. Sketch a diagram - since $\sin \theta$ is positive the terminal arm is quadrant I or II
2. Determine the angle in quadrant I $\sin \theta=0.5$
$\theta=\sin ^{-1}(0.5)$
$\theta=30^{\circ} \quad \theta_{R}=30^{\circ}$

3. Determine the angle in quadrant II
$\theta=180^{\circ}-\theta_{R}$
$\theta=180^{\circ}-30^{\circ} \quad$ The two solutions are $\theta=30^{\circ}$ or $\theta=150^{\circ}$
$\theta=150^{\circ}$
\qquad

Example 5 cont.

b) $\cos \theta=-\frac{\sqrt{3}}{2}, \quad 0^{\circ} \leq \theta<180^{\circ}$

1. Since $\cos \theta$ is negative the terminal arm is in quadrant II or III. Because the angle is $<180^{\circ}$, it must be in quadrant II.
2. Use a $30^{\circ}, 60^{\circ}, 90^{\circ}$ triangle to find θ_{R} $\cos \theta_{R}=\frac{\sqrt{3}}{2}$
$\theta_{R}=30^{\circ}$

3. Find the angle using a 30° reference angle in quadrant II

$$
\begin{aligned}
& \theta=180^{\circ}-\theta_{R} \\
& \theta=180^{\circ}-30^{\circ} \\
& \theta=150^{\circ}
\end{aligned}
$$

Try: Solve $\sin \theta=-\frac{1}{\sqrt{2}}, \quad 0^{\circ} \leq \theta<360^{\circ}$

Example 6

Find Angles Given Approximate Sine, Cosine or Tangent

Example: Given $\cos \theta=-0.6753$, where $0^{\circ} \leq \theta<360^{\circ}$ determine the measure of θ, to the nearest tenth of a degree.

1. Since $\cos \theta$ is negative, the angles the terminal arm is quadrant II or III
2. Determine the reference angle
$\cos \theta_{R}=0.6753$
$\theta_{R}=\cos ^{-1}(0.6753)$
$\theta_{R} \approx 47.5$
3. Determine the angles in quadrants II \& III
quadrant II
quadrant III
$\theta=180^{\circ}-\theta_{R}$
$\theta=180^{\circ}+\theta_{R}$
$\theta=180^{\circ}-47.5^{\circ}$
$\theta=180^{\circ}+47.5^{\circ}$
$\theta=132.5^{\circ} \quad \theta=227.5^{\circ}$

Try: Determine the measure of θ, to the nearest degree, given $\sin \theta=-0.8090$, where $0^{\circ} \leq \theta<360^{\circ}$

