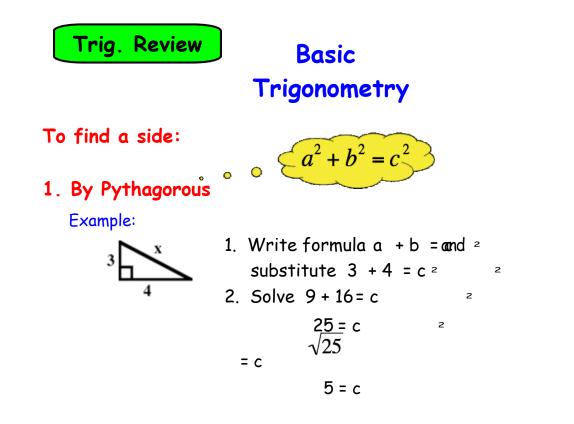
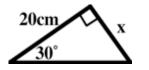


Agenda:

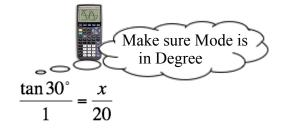


2. By Trigonometry. • • SOH CAH TOA

Example:

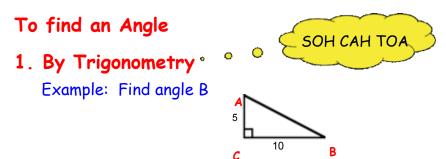


- Determine the correct ratio (sin, cos or tan) - here we use tan because we are using the opposite and adjacent sides.
- 2. Write out ratio: $\tan = \frac{opp}{adj}$
- 3. Substitute: or $\tan 30^\circ = \frac{x}{20}$



4. Cross multiply to solve:

 $x = \tan 30^{\circ} \times 20 = 11.6$ cm



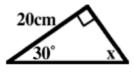
1. Determine the correct ratio (sin, cos or tan) - here we use tan because we are using the opposite and adjacent sides.

2. Write out ratio:
$$\tan = \frac{opp}{adi}$$

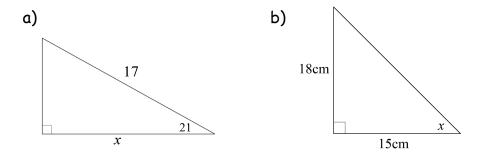
- 3. Substitute: $x = \tan B = \frac{5}{10} = 0.5$
- 4. Solve using tan: $B = \tan^{-1}(0.5) = 26.6^{\circ}$

2. Using the Sum of Angles in a Triangle

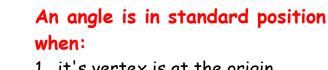
Example: Find angle x



- 1. All 3 angles sum to 180°- we know 2 of the angles are 30° and 90°
- 2. $x = 180 90 30 = 60^{\circ}$



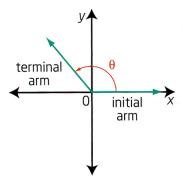
Angles in Standard Position



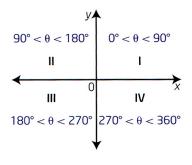
1. it's vertex is at the origin

and

- 2. the initial arm is on the positive x-axis
- *Angles in standard position are always measured counter-clockwise from the initial arm



Topic 1

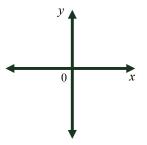


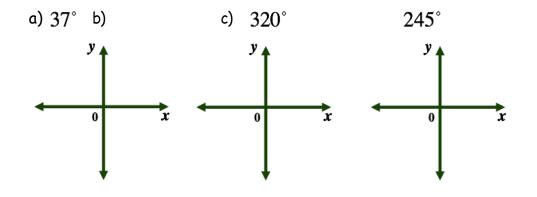
Angles in standard position are shown on the Cartesian plane The x-axis and y-axis divide the plane into 4 quadrants

Example 1

Sketch an Angle in Standard Postion, $0^{\circ} \le \theta \le 360^{\circ}$

Example: a) 170°

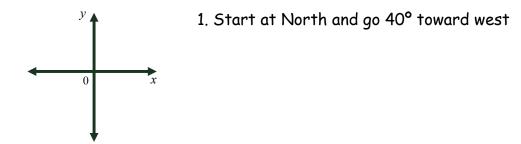




Example 1 - Part b

Directions: Are defined as a measure either east or west of north or south

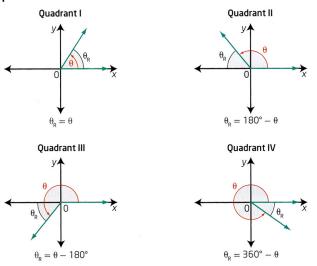
Example: Show N40°W as an angle in standard position



Reference Angles

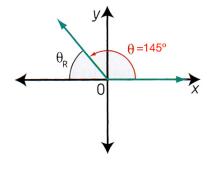
A Reference angle (θ_R) is:

- 1. the acute ($\leq 90^{\circ}$) angle between the terminal arm and the -axis
- 2. always positive



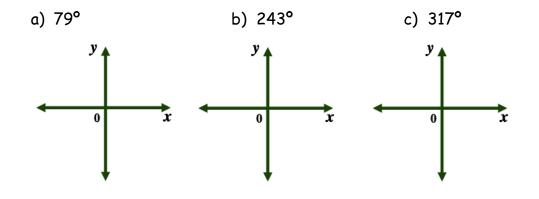
Determine a Reference Angle

Example: $\theta = 145^{\circ}$



- 1. sketch angle
- place the reference angle find the shortest distance back to the x-axis
- 3. calculate reference angle $\theta_R = 180^\circ - \theta$ $\theta_R = 180^\circ - 145^\circ$

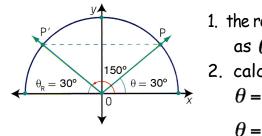
$$\theta_R = 35^\circ$$



Determine the Angle in Standard Position When Example (part 1): Reflected

Determine the angle in standard position when an angle of 30° is reflected:

a) in they-axis



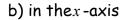
1. the reference angle is the same as θ , 30°, but is across the -axis 2. calculate the angle $\theta = 180^{\circ} - \theta_R$ $\theta = 180^{\circ} - 30^{\circ}$ $\theta = 150^{\circ}$

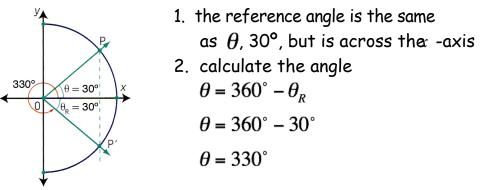
Example 3 cont.

Determine the Angle in Standard Position

Example (part 2):

Determine the angle in standard position when an angle of 30° is reflected:





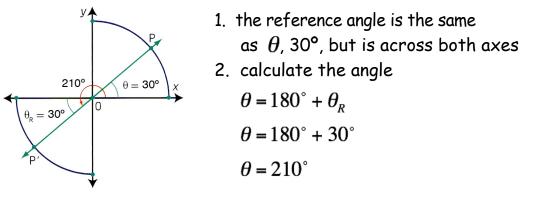
Example 3 cont.

Determine the Angle in Standard Position

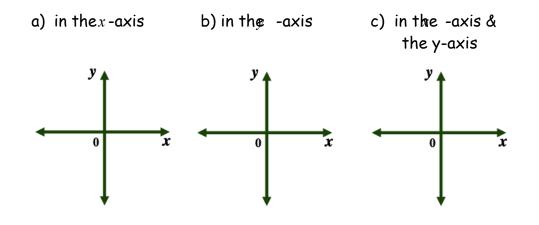
Example (part 3):

Determine the angle in standard position when an angle of 30° is reflected:

c) in the y -axis & then in the -axis

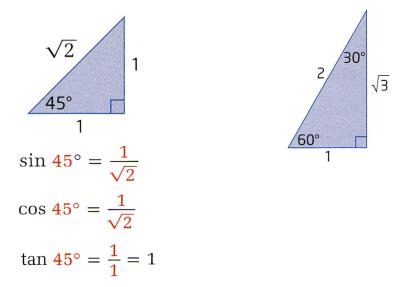


Try: Determine the Angle in Standard Position When an angle of 45° is Reflected:



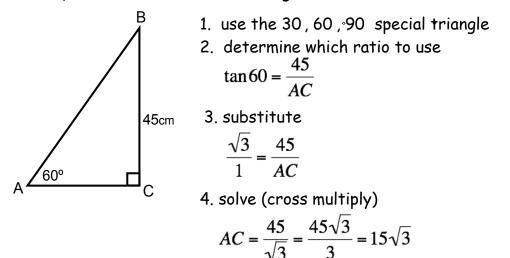
Special Triangles

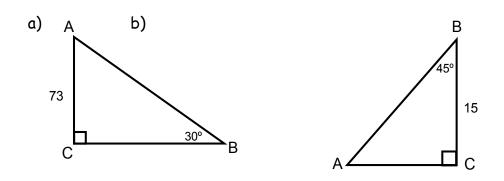
For right triangles of 30°, 45° and 60°, you can find exact values of trig. ratios using 2 special triangles



Finding an Exact Distance

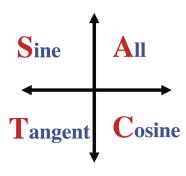
Example: Determine the exact length of side AC.





Try: Find the exact length of AB in each of the triangles.

CAST Rule

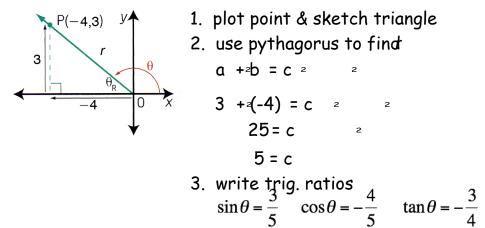


The CAST rule tells you which trigonometric ratios are positive for each quadrant.

- 1. All (Sine, Cosine & Tangent) are positive in quadrant I
- Only Sine is positive in quadrant II (so cosine and Tangent are negative) etc.

Topic 2Example 1Trigonometric Ratios of Any Angle

Example: The point P(-4, 3) lies on the terminal arm of an angle, θ , in standard position. Determine the exact ratios for sin θ , cos θ , and tan.

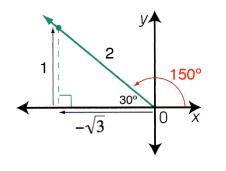


Try: The point P is on the terminal arm of an angle θ in standard position. Draw a diagram and calculate sin θ , tan θ , and cos θ .

a) P (5, 2) b) P (6, -5)

Determine the Exact Value of a Trigonometric Ratio

Example: Determine the exact value of cos 150



- 1. sketch angle in standard pos.
- 2. calculate reference angle

$$\theta_{R} = 180^{\circ} - \theta$$
$$\theta_{R} = 180^{\circ} - 150^{\circ}$$
$$\theta_{R} = 30^{\circ}$$

- 3. sketch special triangle
- 4. write cos ratio

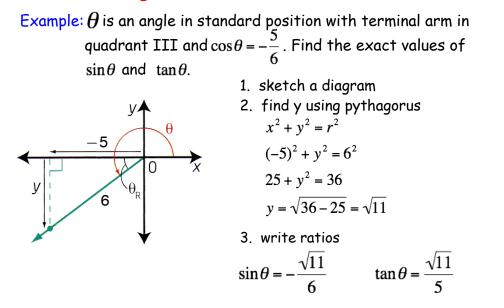
$$\cos\theta = -\frac{\sqrt{3}}{2}$$

Try: Determine the exact value of each of the following:

a) cos 45°

b) tan 315°

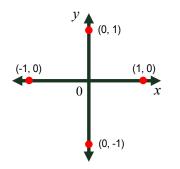
Determine Trigonometric Ratios



Try: θ is an angle in standard position with terminal arm in quadrant II and $\sin\theta = 3/5$. Find the exact value of $\cos\theta$ and $\tan\theta$.

Determine Trigonometric Ratios of Quadrantal Angles

Example: Determine the values of sin θ , cos θ , and tan θ for quadrantal angles of 0°, 90°, 180° and 270°



- 1. Sketch a diagram
- 2. Place 4 points, each 1 unit from the origin
- 3. The *x*-coordinate tells you the cosine & the *y*-coordinate the sine
- 4. Find the tangent using Tan = Sin/Cos

Find Angles Given the Exact Sine, Cosine or Tangent

Example: Solve for θ

a) $\sin\theta = 0.5, \ 0^{\circ} \le \theta < 360^{\circ}$

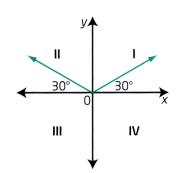
- 1. Sketch a diagram since sin θ is positive the terminal arm is quadrant I or II
- 2. Determine the angle in quadrant I $\sin \theta = 0.5$

$$\theta = \sin^{-1}(0.5)$$

 $\theta = 150^{\circ}$

$$\theta = 30^{\circ}$$
 $\theta_R = 30^{\circ}$

3. Determine the angle in quadrant II $\theta = 180^{\circ} - \theta_R$ $\theta = 180^{\circ} - 30^{\circ}$ The two solution

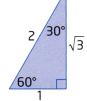


The two solutions are
$$heta$$
 =30° or $heta$ =150°

Example 5 cont.

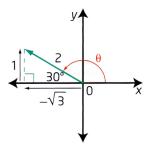
b)
$$\cos\theta = -\frac{\sqrt{3}}{2}$$
, $0^{\circ} \le \theta < 180^{\circ}$

- 1. Since $\cos\theta$ is negative the terminal arm is in quadrant II or III. Because the angle is< 180°, it must be in quadrant II.
- 2. Use a 30°, 60°, 90° triangle to find θ_R $\cos \theta_R = \frac{\sqrt{3}}{2}$ $\theta_R = 30^\circ$



3. Find the angle using a 30° reference angle in guadrant II

$$\theta = 180^{\circ} - \theta_{R}$$
$$\theta = 180^{\circ} - 30^{\circ}$$
$$\theta = 150^{\circ}$$



Try: Solve
$$\sin\theta = -\frac{1}{\sqrt{2}}$$
 $0^{\circ} \le \theta < 360^{\circ}$

Find Angles Given Approximate Sine, Cosine or Tangent

Example: Given $\cos \theta = -0.6753$, where $0^{\circ} \le \theta < 360^{\circ}$ determine the measure of θ , to the nearest tenth of a degree.

- 1. Since $\cos heta$ is negative, the angles the terminal arm is quadrant II or III
- 2. Determine the reference angle $\cos \theta_R = 0.6753$ $\theta_R = \cos^{-1}(0.6753)$
 - $\theta_R \approx 47.5$
- 3. Determine the angles in quadrants II & III auadrant II quadrant III

1	•
$\theta = 180^{\circ} - \theta_R$	$\theta = 180^{\circ} + \theta_{R}$
$\theta = 180^{\circ} - 47.5^{\circ}$	$\theta = 180^{\circ} + 47.5^{\circ}$
$\theta = 132.5^{\circ}$	$\theta = 227.5^{\circ}$

```
Try: Determine the measure of \theta, to the nearest degree, given sin\theta = -0.8090, where 0^{\circ} \le \theta < 360^{\circ}
```