AB Calculus Jan 6/	2009	Name:		
1. Find the derivative A. $4x + 7$		-7x-5 C. $8x+7$	D. $8x^2 + 7x$	E. none of these
2. Given $f(x) = 3$. A. $5x+1$	$x^2 - 4x + 5$ find B. $6x + 1$		D. 6x-4	E. none of these
3. If $y = 3x^3 - 4x^2$ A. $3x^2 - 4x$	+5 find $\frac{dy}{dx}$ B. $3x^2 - 4x + 5$	5 C. $9x^2 - 8x$	D. $9x^2 - 8x + 5$	E. none of these
4. Find $\frac{dy}{dx}$ if $y =$				
		C <i>x</i> +7	D6 <i>x</i>	E. none of these
5. Find <i>f</i> '(<i>x</i>) if <i>f</i> A. 0		C. 3	D. $\frac{3}{x}$	E. none of these
6. Given that r is an A. rx^{r-1}		termine $\frac{d}{dx}(x^r)$ C. $(r-1)x^r$	D. $(r+1)x^{r}$	E. none of these
7. If $f(x) = \frac{3}{x}$ th A. $-\frac{3}{x^2}$		C3x	D. 3x	E. none of these
8. Find $\frac{dy}{dx}$ if $y =$ A. $\frac{1}{\sqrt{x}}$	$= 2\sqrt{x}$ B. $-\sqrt{x}$	C. $\frac{1}{2\sqrt{x}}$	D. $-\frac{1}{2}x$	E. none of these
9. If $f(x) = \sqrt{x}$ d A. $-\frac{1}{4}$	etermine the value B. $-\frac{1}{8}$	of $f'(x)$ at (16, C. $\frac{1}{8}$	4) D. <u>1</u> 4	E. none of these
10. If $f(x) = k\sqrt{x}$ A. $k = 3$		the of the constant k C. $k = 12$		E. none of these
11. For the curve $y =$ the value of k	$= x^k \ (k \neq 0)$, the sl	lope of the tangent i	s equal to 16k whe	en $x = 2$ Determine
A. 3	B. 4	C. 5	D. 8	E. none of these

12.	Given $f(x) = -\frac{5}{2}$	$\frac{5}{2}$ determine $f'(x)$)				
		B. $-\frac{10}{x^3}$		$\frac{3}{x^3}$	D.	$\frac{5}{2x}$	E. none of these
13.	Given $y = \frac{1}{x^3}$	determine $\frac{dy}{dx}$					
	A. $-\frac{3}{x^2}$	$B. -\frac{3}{x^4}$	C.	$\frac{1}{3x^2}$	D.	$\frac{1}{3x^4}$	E. none of these
14.	Find y' if $y =$						
	A. $\frac{2}{3}x^{\frac{1}{2}}$	B. $\frac{3}{2}x^{\frac{1}{2}}$	C.	$\frac{2}{3}x^{\frac{5}{2}}$	D.	$\frac{3}{2}x^{\frac{5}{2}}$	E. none of these
15.	Which of the foll	lowing represents th					
	A. <i>f</i> '(2)	B. <i>f</i> (2)	C.	f'(x) = 0	D.	f'(x) = 2	E. none of these
16.	Given $f(x) = \frac{1}{2}$	determine $f'(x)$					
	A. <u>1</u>	B. $\frac{1}{x^2}$	C.	_1	D.	$\frac{1}{x}$	E. none of these
	x^2	x^2		x		x	5
17.	If $y = 7$ determ	nine $\frac{dy}{dx}$					
	A. 0	B. 1	C.	7	D.	$\frac{7}{x}$	E. none of these
18.	Evaluate the deri	vative of the function	on <i>f</i>	$(x) = 3x^2 - 2x$	-1	at the point wh	here $x = 0$
							E. none of these
				5			
19.	Evaluate the deri	vative of $f(x) = 2$ B 5	$x^2 - C$	3x+2 at the	point D	t where $x = 2$	F
	$\frac{3}{4}$	$B. \frac{5}{4}$	0.	4	υ.	5	E. none of these
20.	Given $f(x) = (2)$	$(2x-3)^2$ then $f'($	(x) =				
		B. 8x		4x - 6	D.	8 <i>x</i> -12	E. none of these
21.	Given the function	on $f(x) = \sqrt{2}$ det	ermi	ne $f'(x)$			
	A. 0	B. _{√2}	C.	$\frac{1}{2\sqrt{2}}$	D.	$\frac{1}{\sqrt{2}}$	E. none of these
				2N 2		N 2	
22.) then $f'(x)$ equa B. $g'(x)$		g'(6)	D.	6	E. none of these

23. For what condition is f(x) increasing? A. f(x) > 0 B. f(x) < 0 C. f'(x) > 0 D. f'(x) < 0 E. none of these 24. Find k such that the function $f(x) = kx^2 + 12x - 4$ has a critical point at x = 4A. k = -6 B. $k = -\frac{3}{2}$ C. $k = \frac{3}{2}$ D. k = 6 E. none of these

25. Determine all values of x such that the function $f(x) = x^3 - 3x^2 + 5$ is decreasing. A. x < 2 B. x > 2 C. 0 < x < 2 D. x < 0 or x > 2

26. Find the x-value of the point on the graph of $y = x^2 - x$ where the slope of the tangent is 2 A. 0.5 B. 1.5 C. 2 D. 3 E. none of these

- 27. Find all values of x such that the function $f(x) = 2x^3 3x^2$ is increasing A. x < 1 B. x > 0 C. 0 < x < 1 D. x < 0 or x > 1
- 28. Give all values of x where the function $f(x) = x^3 3x + 4$ is increasing A. x > 1 B. x < -1 C. -1 < x < 1 D. x < -1 or x > 1

29. At which of the following values of x is the function $g(x) = x^3 - 4x^2$ decreasing? A. x = -3 B. x = -1 C. x = 2 D. x = 4 E. none of these

30. If f'(x) = -6x determine all values of x such that f(x) is decreasing A. x > 0 B. x < 0 C. -6 < x < 0 D. all real numbers

31. Determine the x-values of the critical points for the function $f(x) = x^3 + 3x^2 - 24x$ A. x = -4, x = 2D. x = 0, x = 3.62, x = 6.62E. none of these

32. Determine all values of x such that the function $f(x) = x^4 - 18x^2 + 8$ is *decreasing*.

33. Determine all values of x such that the function $f(x) = x^4 - 8x^2 - 9$ is increasing.

- 34. a) Determine the x values of the critical points of f(x) = x⁴ 8x²
 b) For what values of x is f(x) = x⁴ 8x² decreasing
- 35. Given the function $f(x) = 2x^3 3x^2 12x + 4$
 - a) determine the coordinates of the critical points of f(x)
 - b) determine where f(x) is increasing

36.	For the function	$f(x) = \frac{1}{3}x^3 + \frac{1}{2}x$	$x^2 - 6x$, find the x-	coordinate of the cr	itical point where the
	local minimum po	oint occurs.			
	A3	B2	C. 2	D. 3	E. none of these
37.	Find the minimum	n value of the fund	ction $f(x) = 2x^2 - $	12x + 6	
	A. –24	B. -12	C. 3	D. 6	E. none of these
38.	• Determine the min	nimum value of th	the function $f(x) =$	$3x^2 - 12x + 13$	
	A. 0	B. 1	C. 2	D. 13	E. none of these
39.	• Determine the mi	nimum value of th	the function $g(x) =$	$2x^2 - 12x + 25$	
	A. 0	B. 3	C. 7	D. 25	E. none of these
40.	. Determine the mi	nimum value of th	the function $y = 3x^2$	-24r-7	
-	A. –79		C. 4). no minimum value
41.	. Find the maximur	n value of the fun	ction $y = -13 - 6x$	$-r^2$	
					E. none of these
42	If $u = 2au + bu^2$	and a and b are	positive constants,	determine the mini	mum value of u
74.	A. a				
	$\frac{A}{b} = \frac{a}{b}$	\overline{b}	$-\frac{a}{b}$	$-\frac{b}{b}$	E. none of these
43.	• Determine the ma	uximum value of t	he function $f(x) =$	$-2x^2 - x + 6$	
	A0.25	B. 0			E. none of these
44.	Find the minimum	n value of the fun	ction $f(x) = 2x^2 - $	12 r + 25	
	A. 0	B. 3	C. 7	D. 25	E. none of these
45	If $f(x) = x^4 + b$	w^2 has a minimum	m ot $u = 1$ then dot	arming the value of	Sthe constant k
10.			m at $x = 1$, then det C. 1	D. 2	E. <i>none of these</i>
	-2	$\frac{B}{-\frac{1}{2}}$	$\overline{2}$	2	none of these
46.	• Determine the ma	ximum value of t	he function $f(x) =$	$2 - 18x - 3x^2$	
	A79	В. –3	C. 3	D. 29	E. none of these
					-
47.	What is the maxir	num value of the	function $f(x) = 4$	$-8x-x^2$	
47.	What is the maxim A4	num value of the B. 4	function $f(x) = 4 - C$. 12	$-8x - x^2$ D. 20	E. none of these

48. Find the slop A. −2	be of the line tangent to B. 1			nt where $x = -1$ E. <i>none of these</i>
49. Find the slop A. 4	be of the tangent to $y = B$. 6	$x^{3} - 2x^{2} + 6$ at C. 10		E. none of these
	be of the line tangent to B. –6			
	-1 is tangent to the cu -3 B. $f(a) = 1$			
line equal to				
A. $\frac{2}{3}$	B. 1	C. 8	D. 1 and $\frac{1}{3}$	E. none of these
53. Determine th	ne slope of the line tang	gent to $y = \frac{6}{x}$ at ((2,3)	
A3	B. -2	C. $-\frac{3}{2}$	D. $-\frac{2}{3}$	E. none of these
	nt on $y = 2x^2 + 6x - 1$			
	B. (-1, 2)			E. none of these
	ne slope of the line tang		\mathcal{A}	
A. –16	$\frac{B}{-\frac{1}{16}}$	$\begin{array}{c} C. \frac{1}{16} \end{array}$	D. 16	E. none of these
-	tion of the line tangent			
A. $y = -3x$	x + 2 B. $y = -2x + 2$	2 C. $y = 2x + 2$	D. y = 3x + 2	E. none of these
-	it on the curve $y = x^2$			
	B. (-3, 5)			-
58. Determine th A. 1	the slope of the line tang B. 1	gent to the graph of C . 3	$f(x) = \sqrt{x}$ at $x = D$.	= 9 E.
$\frac{1}{6}$	$\begin{array}{c} B. \frac{1}{3} \end{array}$	$\frac{2}{2}$	3	none of these
-	= -4x + 18 is tangent t la has a critical point a		-	nt where $x = 3$

A. -4 B. -2 C. -1 D. 2 E. none of these

60. What are the coordinates of the point on the graph of $y = \sqrt{x}$ where the slope of the tangent

is
$$\frac{1}{8}$$

A. $\left(\frac{1}{16}, \frac{1}{4}\right)$ B. $\left(\frac{1}{16}, 4\right)$ C. $\left(16, \frac{1}{8}\right)$ D. $(16, 4)$ E. none of these

61. Determine the slope of the line tangent to the graph of $y = x^3 - x^2$ at the point where x = 2A. 2 B. 4 C. 8 D. 10 E. *none of these*

62. Determine the slope of the tangent line to $f(x) = -\frac{2}{x}$ at the point where x = 2

A. -2 B. $-\frac{1}{2}$ C. $\frac{1}{2}$ D. 2 E. none of these

63. What is the slope of the tangent line to the graph of $y = -x^2 + 2x - 3$ at the point (2,-3) A. -18 B. -3 C. -2 D. 8 E. none of these

64. What is the slope of the tangent line to the function y = 3 - xA. -1 B. 0 C. 2 D. 3 E. none of these

65. The equation of the normal line to the curve $y = x^4 + 3x^3 + 2$ at the point where x = 0 is A. y = x B. y = 13x C. y = 0 D. y = x + 2 E. x = 0

66. The line L is perpendicular to the parabola $y = kx^2$ at the point (1, 5) What is the equation of L A. y = 10x - 5 B. x + y = 6 C. x + 10y = 51 D. 10x + 3y = 25 E. y = 5x

67. If x + 7y = 29 is an equation of the line *normal* to the graph of f at the point (1, 4), then f'(1) = A. A. 7
B. $\frac{1}{7}$ C. $-\frac{1}{7}$ D. $-\frac{7}{29}$ E. -7

68. The line perpendicular to the tangent of the curve represented by the equation $y = x^2 + 6x + 4$ at the point (-2,-4) also intersects the curve at x =

A. -6 B. $-\frac{9}{2}$ C. $-\frac{7}{2}$ D. -3 E. $-\frac{1}{2}$

69. An equation of the line normal to the graph of $y = x^4 - 3x^2 + 1$ at the point where x = 1 is A. 2x - y + 3 = 0 B. x - 2y + 3 = 0 C. 2x - y - 3 = 0 D. x - 2y - 3 = 0 E. x - 2y = 0

70. An equation of the line normal to the graph of $y = 7x^4 + 2x^3 + x^2 + 2x + 5$ at the point where x = 0 is A. x + 2y = 10 B. 2x + y = 10 C. 5x + 5y = 2 D. 2x - y = -5 E. 2x + y = -10 71. Find the equation of the line normal to $y = 4x^2 + 2x + 9$ at the point where x = 1

- A. 10x + y = -151 B. x + 10y = 151 C. x y = 9
 - D. 10x y = -5 E. x 10y = 151

72. The coordinates of the point where the normal to the curve $y = \frac{1}{3}x^3 + \frac{1}{2}x^2 + x$ at x = 1

intersects the y-axis are

A.
$$\left(0, \frac{3}{2}\right)$$
 B. $\left(\frac{3}{2}, 0\right)$ C. $\left(0, \frac{13}{6}\right)$ D. $\left(\frac{13}{6}, 0\right)$ E. $\left(0, \frac{5}{3}\right)$

73. The line normal to the curve $y = x^2$ at (2, 4) intersects the curve at x =

A.
$$-3$$
 B. $-\frac{5}{2}$ C. $-\frac{9}{4}$ D. -2 E. $-\frac{3}{2}$

74. Find the value of x at which the normal to the curve $y = x^2 + 1$ at x = 3 intersects the curve again.

75. The line normal to the function $f(x) = 4 - x^2$ at x = -1 intersects the curve again. Find the value of the function at that point.

x	-4	-3	-2	-1	0	1	2	3	4
g'(x)	2	3	0	-3	-2	-1	0	3	2

The derivative g' of a function g is continuous and has exactly two zeros. Selected values of g' are given in the table. If the domain of g is the set of all real numbers, then g is decreasing on which of the following intervals ?

- A. $-2 \le x \le 2$ onlyB. $-1 \le x \le 1$ onlyC. $x \ge -2$ D. $x \ge 2$ onlyE. $x \le -2$ or $x \ge 2$
- 77. Given the function shown on the right, how many of the following statements are true ? I. f'(b) = 0II. f''(a) < 0III. f''(c) < 0IV. f''(b) > 0A. 0 B. 1 C. 2 D. 3 E. 4
- 78. If y is a function of x such that y' > 0 for all x and y'' < 0 for all x, which of the following could be part of the graph of f(x)

76.

84.

92.	Derivativ	ves of y	$=e^{u}$	and $y = \ln x$	u
		y' :	$= e^{u} \frac{du}{dx}$	$y' = \frac{1}{u}$	$\frac{du}{dx} = \frac{u'}{u}$
93. If <i>f</i> (A	$f(x) = \ln x^3$ $\frac{1}{3}$	then $f''(3) = B1$	C3	D. 1	E. none of these
		then y''(0) B. –1		D. 1	E. none of these
such t A. x	hat		Hed by $f(x) = 1$ B. $-2 \le x \le 3$ E. $-2 > x \text{ or } x$		of all real numbers $x \le x$ or $x \ge 3$
		$y = \ln\left(x\sqrt{x^2}\right)$ B. $\frac{1}{x\sqrt{x^2 + x^2}}$,	$\frac{+1}{x(x^2+1)}$ D. $\frac{2x^2+1}{x(x^2+1)}$	E. none of these
97. log ₁ x A. – J		B. log _x b	C. $-\log_x$	b D. b ^x	E. none of these
		e^{2x} then f'' B. 8		D. 4	E. 3
		then $g'(x) =$ B. $\frac{2}{2x+1}$	C. 2(2x	+1) D. e^{2x+1}	E. $\ln(2x+1)$
-		$b^{\frac{3}{2}} - e^{x^2 - 9}$ then B3		D. 1	E. 3
	ify: In 2 - n 12	- ln 5 – ln 8 – ln B. ln 12		$-\ln 23$ D. $-\ln\left(\frac{1}{12}\right)$	E. In(-16)
b) fin	$f'(x) = \ln(x^{2})$ e domain of d $f(5)$ d $f'(-3)$	<i>,</i>			

103. If $y = f(x) = x^3 + \ln x$ then $y' =$ A. $3x^2 \ln x + x^2$ B. $\frac{1}{4}x^4 + \frac{1}{x}$ C. $3x^2 +$	$\frac{1}{x} \qquad \begin{array}{c} \text{D.} \\ 3x^2 + x \ln x \end{array} \qquad \begin{array}{c} \text{E.} \\ \text{none of these} \end{array}$
104. Solve: $\log_9 x^2 = 9$ A. 1 B. 3 ³ C. 3 ⁹	D. ±3 ⁹ E. 3 ¹⁸
105. If $f(x) = x \ln x$, then $f'''(e) =$ A. $\frac{1}{e}$ B. 0 C. $-\frac{1}{e^2}$	D. $\frac{1}{e^2}$ E. $\frac{2}{e^3}$
106. If $e^{g(x)} = \frac{x^x}{x^2 - 1}$ then $g(x) =$ A. $x \ln x - 2x$ B. $\frac{\ln x}{2}$ D. $\frac{x \ln x}{\ln(x^2 - 1)}$ E. $x \ln x - \ln(x)$	C. $(x-2)\ln x$
107. If $\ln x - \ln \left(\frac{1}{x}\right) = 2$, then $x =$ A. $\frac{1}{e^2}$ B. $\frac{1}{e}$ C. e	D. e^{2e} E. e^{2}
108. If $y = x^2 e^x$ then $\frac{dy}{dx} =$ A. $2xe^x$ B. $x(x+2e^x)$ C. $xe^x(x+2e^x)$	(+2) D. $2x + e^x$ E. $2x + e^x$
109. If $y = \ln[(x+1)(x+2)]$, then $\frac{dy}{dx} =$ A. $\frac{1}{x+1} + (x+2)$ B. $\frac{1}{(x+2)} + (x+2)$ D. $\frac{x+1}{x+2}$ E. $\frac{1}{x+1} + \frac{1}{x+2}$	
110. Solve: $2x = 7^{1 + \log_7 4}$ A. 3 B. 6 C. 7	D. 10 E. 14
111. What is x when $6 = e^{5x}$ A. $\frac{e^6}{5}$ B. $6 - \ln 5$ C. $5 \ln 6$	D. $\frac{\ln 6}{5}$ E. $\frac{6}{e^5}$

112.	$ln_e 10 =$ A. $ln_{10} e$	$B. \frac{1}{\ln_{10} e}$	C. <i>e</i> ¹⁰	D. \\\\\/ <i>e</i>	E. 10(ln <i>e</i>)
113.	The tangent to the A. 0	e curve of $y = xe^{-1}$ B.	x is horizontal whe C. -1	n x is equal to D. $\frac{1}{e}$	E. none of these
114.	Find $\frac{dy}{dx}$ for $y =$ A. $\frac{x}{\sqrt{x^2+4}}$	$= \ln \sqrt{x^2 + 4}$ B. $\frac{2x}{\sqrt{x^2 + 4}}$	C. $\frac{x}{x^2+4}$	D. $\frac{1}{x}$	E. none of these
115.	x = 2 A. $4x - 3y = 8$		to the graph of $f(x - y = 8 - \ln 3)$ none of these		
116.	If $f(x) = e^{-2x}$, A. $16e^{-x}$	then $f^{(4)}(x) =$ B. $16e^{-2x}$	C. $-8e^{-2x}$	D. $8e^{-2x}$	E. $-16e^{-2x}$
117.	If $\log_b(3^b) = \frac{b}{2}$, A. $\frac{1}{9}$	then $b =$ B. $\frac{1}{3}$	C. <u>1</u> 2	D. 3	E. 9
118.	Find $\frac{dy}{dx}$, if $y =$ A. $\frac{3 \ln^2 x}{x}$ D. $3(\ln x + 1)$	= <i>x</i> ln ³ <i>x</i> B. E.	$3\ln^2 x$ none of these	C. 3 <i>x</i> lr	$n^2 x + \ln^3 x$
119.	If $y = \frac{e^{\ln u}}{u}$, then A. $\frac{e^{\ln u}}{u^2}$	$h \frac{dy}{du} = B.$ $e^{\ln u}$	C. $\frac{2e^{\ln u}}{u^2}$	D. 1	E. 0
120.	What is the slope		to the curve $y = \ln \frac{1}{7}$		

121. What is the slope				
A. $\frac{1}{10}$	$B. \frac{3}{10}$	C. $\frac{1}{5}$	D. $\frac{1}{15}$	E. $\frac{3}{5}$
10	10	5	15	5
122. The derivative of				
A. $2x$	B. <u>2</u>	C. 1	D. <u>1</u>	$E. \frac{2x+3}{x^2+2x+1}$
$x^2 + 2x + 1$	<i>x</i> +1	$x^{2} + 2x + 1$	<i>x</i> +1	$x^{2} + 2x + 1$
123. If $f(x) = \ln(x + 1)$	$-4 + e^{-3x}$) then f	f'(0) =		
A. <u>2</u>	B. $\frac{1}{5}$	C. <u>1</u>	D. <u>2</u>	E. <i>nonexistent</i>
5	5	4	5	
124. If $6y = 3e^{2x}$ t	then $y' =$			
A. $\frac{1}{e^{2x}}$	B. $3e^x$	C. $3e^{2x}$	D. $6e^x$	E. e^{2x}
2		St		t
125. If $f(x) = x^2 \ln x$	x^3 then $f'(x) =$	=		
A. $3r + \ln r^3$	$B. \qquad 3x(1+\ln x^2)$	C. <u>1</u>	D. 2 r	E. $2x\ln 3x^2$
		x		22 111 02
126. If $y = e^{\frac{1}{2}\ln(x^2 - 4x + x)}$	⁷⁾ then $\frac{dy}{dt} =$			
Λ .	dx		C	1
A. $e^{\frac{1}{2}\ln(x^2-4x+7)}$	D.	x – 2	U.	$\frac{1}{x^2 - 4x + 7}$
D. x-2	E.	$(2x-4)e^{\frac{1}{2}\ln(x^2-4x+4x+4x)}$	۰. ۲	$x = \pi x + \gamma$
D. $\frac{x-2}{\sqrt{x^2-4x+x^2}}$	7	$(2x-4)e^{\frac{1}{2}\ln(x^2-4x+4)}$	-7)	

127. Given the equation $y = 3e^{-2x}$ what is an equation of the normal line to the graph at $x = \ln 2$

A.
$$y = \frac{2}{3}(x - \ln 2) + \frac{3}{4}$$

D. $y = -\frac{3}{2}(x - \ln 2) - \frac{3}{4}$
E. $y = 24(x - \ln 2) - \frac{3}{4}$
C. $y = -\frac{3}{2}(x - \ln 2) + \frac{3}{4}$

128. The equation of the normal line to the graph of $y = e^{2x}$ at the point where $\frac{dy}{dx} = 2$ is A. $y = -\frac{1}{2}x - 1$ B. $y = -\frac{1}{2}x + 1$ C. y = 2x + 1D. $y = \frac{1}{2}(y - \ln 2) + 2$ E. $2(-\ln 2) - 2$

D.
$$y = -\frac{1}{2} \left(x - \frac{\ln 2}{2} \right) + 2$$
 E. $y = 2 \left(x - \frac{\ln 2}{2} \right) + 2$

129.		$\frac{dy}{dx} \text{ for } y = \frac{1}{(5-x)^6}$			C.	$-6(5-x)^5$	D.	$6(5-x)^5$	E.	none of these
130.		e slope of the li $\frac{1}{e^2}$							E.	$\frac{4}{e^4}$
	A.	$\log_a 2^a = \frac{a}{4}$ to 2	В.	4					E.	32
132.		e slope of the li $\frac{1}{8}$				· · ·			E.	4
133.	If A.	$f(x) = \log_b x$	and B.	$g(x) = b^x,$ x	then C.	$f(g(x)) = x^{b}$	D.	b ^x	E.	$\log_x b$
134.		nplify: $\ln e^4$		10 ⁴	C.	4(ln 10)	D.	<i>e</i> ⁴	E.	4 <i>e</i>
135.		$y = \ln(x^x)$ the $1 + \ln x$			C.	$x + \ln x$	D.	$y(x+\ln x)$	E.	$x \ln x$
136.		$f(x) = x^2 \ln x$ 2			C.	$2x \ln x$	D.	$1+2x\ln x$	E.	$x+2x\ln x$
137.		nplify: 2 ln e ⁵ 10 <i>x</i>		$5x^2$	C.	$25x^{2}$	D.	e^{10x}	E.	e^{5x^2}
138.		$f(x) = e^{2x}$ and e^{2}								undefined
139.	If A.	$f(x) = e^{2\ln x} $ the 6	nen B.	f'(3) = 9	C.	e ⁶	D.	e ⁹	E.	$\frac{e^9}{9}$
140.	If A.	$y = e^{8x^2 + 1} \text{then}$ e^{8x^2}	$\frac{dy}{dx}$ B.	e^{8x^2+1}	C.	$16xe^{8x^2}$	D.	$16xe^{8x^2+1}$	E.	$(8x^2+1)e^{8x^2}$

141.
$$\frac{d}{dx} \ln\left(\frac{1}{1-x}\right) =$$

A. $\frac{1}{1-x}$ B. $\frac{1}{x-1}$ C. $1-x$ D. $x-1$ E. $(1-x)^2$
142. If $f(x) = x \ln(x^2)$ then $f'(x) =$
A. $\ln(x^2) + 1$ B. $\ln(x^2) + 2$ C. $\ln(x^2) + \frac{1}{x}$ D. $\frac{1}{x^2}$ E. $\frac{1}{x}$
143. $\frac{d}{dx} (\ln e^{3x}) =$
A. 1 B. 3 C. $_{3x}$ D. $\frac{1}{e^{3x}}$ E. $\frac{3}{e^{3x}}$
144. The slope of the line tangent to the graph of $y = \ln\sqrt{x}$ at $(e^2, 1)$ is
A. $\frac{e^2}{2}$ B. $\frac{2}{e^2}$ C. $\frac{1}{2e^2}$ D. $\frac{1}{2e}$ E. $\frac{1}{e}$
145. If $f(x) = e^{3\ln x^2}$ then $f'(x) =$
A. $\frac{e^{3\ln x^2}}{e^{3\ln x^2}}$ B. $\frac{3}{x^2}e^{3\ln x^2}$ C. $6(\ln x)e^{3\ln x^2}$ D. $5x^4$ E. $6x^4$
146. If $f(x) = \ln(x^5)$ then $f'(e^2) =$
A. 2 B. 3 C. $2e$ D. $3e^2$ E. none of these
147. If $y = e^{ax}$ then $\frac{d^n y}{dx^n}$ (the n^{ab} derivative of y with respect to x) is
A. $n!e^x$ B. $n!e^{ax}$ C. ne^{ax} D. n^8e^x E. n^8e^{ax}
148. The equation of the tangent to the curve $\ln y = 3x^2 + 6x$ at the point where $x = 0$ is
A. $y = 6x + 1$ B. $y = 6x + 6$ C. $y = 6xy + 6$ D. $y = \frac{6x}{y} + 6$ E. none of these
149. If $y = x(\ln x)^2$ then $\frac{dy}{dx} =$
A. $3(\ln x)^2$ B. $(\ln x)(2x + \ln x)$ C. $(\ln x)(2x + \ln x)$
D. $(\ln x)(2x + \ln x)$ E. $(\ln x)(1 + \ln x)$
150. If $f(x) = 3x \ln x$ then $f'(x) =$
A. $3 + \ln(x^3)$ B. $1 + \ln(x^3)$ C. $\frac{3}{x} + 3\ln x$ D. $\frac{3}{x^2}$ E. $\frac{1}{x}$

151.
$$\frac{d}{dx} \ln\left(\frac{1}{x^2-1}\right) =$$

A. $\frac{1}{x^2-1}$ B. $-\frac{2x}{x^2-1}$ C. $\frac{2x}{x^2-1}$ D. $2x^3-2x$ E. $2x-2x^3$
152. If $f(x) = \sqrt{e^{2x}+1}$ then $f'(0) =$
A. $-\frac{\sqrt{2}}{2}$ B. $\frac{\sqrt{2}}{4}$ C. $\frac{\sqrt{2}}{2}$ D. 1 E. $\sqrt{2}$
153. If $f(x) = e^x \ln x$ then $f'(e) =$
A. $e^{e^{-1}} + e^x$ B. $e^{e^{x+1}} + e^x$ C. $e^x + e^x$ D. $e^x + \frac{1}{x}$ E. $e^{e^{-1}}$
154. If $y = \ln(3x+5)$ then $\frac{d^3y}{dx^2} =$
A. $\frac{3}{3x+5}$ B. $\frac{3}{(3x+5)^2}$ C. $\frac{9}{(3x+5)^2}$ D. $\frac{-9}{(3x+5)^2}$ E. $\frac{-3}{(3x+5)^2}$
155. The slope of the line normal to the curve $y = xe^x$ at $x = -1$ is
A. 0 B. $\frac{2}{e}$ C. $-\frac{e}{2}$ D. e E. $undefined$
156. If $x = \frac{1}{2}$ when $x = \log_x x$ then $y =$
A. $\frac{1}{4}$ B. $\frac{1}{2}$ C. 1 D. 2 E. 4
157. If $f(x) = e^x$ and $g(x) = \frac{1}{x}$ then the derivative of $f(g(x))$, evaluated at $x = 2$ is
A. $-\frac{\sqrt{e}}{2}$ B. $-\frac{\sqrt{e}}{4}$ C. $-\frac{e}{4}$ D. $\frac{e}{2}$ E. \sqrt{e}
158. If the function $f(x) = \ln(x^3-1)$ then $\frac{f(7)-f(5)}{f'(7)-f'(5)} =$
A. $-8\ln 2$ B. $-8\ln 24$ C. $-12\ln 2$ D. $-12\ln 24$ E. $-6\ln 24$
159. If $f(x) = x^e e^x$ then $f'(x) =$
A. $x^e e^x$ B. $x^{-i} e^{x-i}$ C. $e^x(ex^e + x^e)$ D. $\frac{x^i(e+x)}{xe^x}$ E. $\frac{x^e e^x(x+e)}{x}$
160. If $y = x-1$ and $x > 1$ then $\frac{d^3(\ln y)}{dx^2} =$
A. 0 B. $\frac{1}{x-1}$ C. $-\frac{1}{x-1}$ D. $\frac{1}{(x-1)^2}$ E. $-\frac{1}{(x-1)^2}$

161. The slope of the line *normal* to the curve $y = xe^{x^3}$ at x = 1 is A. $-\frac{4}{a}$ B. $-\frac{e}{4}$ C. $-\frac{1}{4a}$ D. $\frac{4}{a}$ E. 4*e* 162. If $f(x) = 1 + \ln(x+2)$ then $f^{-1}(x) =$ A. $e^{x-1}-2$ B. $e^{x+1}-2$ C. $e^{x-1}+2$ D. $e^{x+1}+2$ E. none of these 163. If $f(x) = x \ln \sqrt{x}$ what is f'(x) =A. $\ln \sqrt{x} + \frac{1}{2}$ B. $\ln \sqrt{x} + \frac{x}{2}$ C. $\ln \sqrt{x} + 1$ D. $\ln \sqrt{x} + \frac{\sqrt{x}}{2}$ E. $\ln \frac{1}{2\sqrt{x}}$ 164. If $y = e^{4x^2}$ then $\frac{d(\ln y)}{dx} =$ B. $\frac{dx}{4x^2}$ C. $\frac{dx}{8xe^{4x^2}}$ D. $\frac{dx}{8xe^{8x}}$ E. $\frac{8x}{e^{4x^2}}$ A. 8*x* 165. If $f(x) = \ln(x^2 - e^{2x})$ then f'(1) =A. 0 B. 1 C. 2 E. undefined D. *e* 166. Write the equation of the line perpendicular to the tangent of the curve represented by the equation $y = e^{x+1}$ at x = 0A. $y = -\frac{1}{a}x$ B. $y = -\frac{1}{a}x + e$ C. y = ex + e D. $y = \frac{1}{a}x + e$ E. y = ex167. The second derivative of $f(x) = \ln x$ at x = 3 is A. $-\frac{1}{2}$ B. $-\frac{1}{6}$ C. $\frac{1}{6}$ D. $\frac{1}{2}$ E. $\frac{2}{2}$ 168. Find the equation of the line tangent to $f(x) = 2x + 2e^x$ at x = 0B. y = 2x + 2 C. y = 4x D. y = 4x - 2 E. $y = -\frac{1}{4}x + 2$ A. y = 4x + 2169. Find y'' for $y = x \ln x - 3x$ A. $\frac{1}{x} - 3$ B. $1 + \ln x$ C. $\ln x - 2$ D. $\frac{1}{x}$ E. $\frac{1}{x} - 2$ 170. If $f(x) = e^{\frac{1}{x}}$ then f'(x) =A. $-\frac{e^{\frac{1}{x}}}{x^2}$ B. $-e^{\frac{1}{x}}$ C. $e^{\frac{1}{x}}$ D. $e^{\frac{1}{x}}$ E. $1 e^{\frac{1}{x^{-1}}}$ 171. If $f(x) = \ln \sqrt{x}$ then f''(x) =A. $-\frac{2}{x^2}$ B. $-\frac{1}{2x^2}$ C. $-\frac{1}{2x}$ D. $-\frac{1}{2x^{\frac{3}{2}}}$ E. $\frac{2}{x^2}$

172. If
$$f(x) = (x-1)^{\frac{1}{2}} + \frac{e^{x-2}}{2}$$
 then $f'(2) =$
A. 1 B. $\frac{3}{2}$ C. 2 D. $\frac{7}{2}$ E. $\frac{3+e}{2}$
173. If $y = \ln(e^{-t^2} + 10)$ then $\frac{dy}{dx} =$
A. $-2t$ B. $\frac{1}{e^{-t^2} + 10}$ C. $\frac{-2te^{-t^2}}{e^{-t^2} + 10}$ D. $\frac{-2t}{e^{-t^2} + 10}$ E. $-2t + \frac{1}{10}$
174. The function f defined by $f(x) = e^{3x} + 6x^2 + 1$ has a horizontal tangent at $x =$
A. -0.144 B. -0.150 C. -0.156 D. -0.162 E. -0.168
175.
The graph of the derivative of the function
 f is shown in the diagram. If $f(0) = 0$
then which of the following is true ?
A. $f(-1) < f'(-1) < f''(-1)$ B. $f(-1) < f''(-1) < f'(-1)$ C. $f'(-1) < f'(-1) < f(-1)$
D. $f''(-1) < f(-1) < f'(-1)$ E. $f''(-1) < f'(-1) < f(-1) < f''(-1) < f''(-1) < f'(-1) < f'($

78. Find the equation of the line perpendicular to the line tangent to $f(x) = \ln(3-2x)$ at x = 1A. y = -2x+1 B. $y = \frac{1}{2}x+1$ C. $y = \frac{1}{2}(x-1)$ D. $y = \frac{1}{2}(x+1)$ E. y = -2x+2

179. Implicit Differentiation $\rightarrow x$ variable y in terms of x			11
180. If $xy + y = 3$ then $\frac{dy}{dx} =$ A. $\frac{-y}{1+x}$ B. 0	C. $\frac{3}{y}$	D. $\frac{3}{1+x}$	E. - y
181. If $x + y = xy$ then $\frac{dy}{dx} =$ A. $\frac{1}{x-1}$ B. $\frac{y-1}{x-1}$	C. $\frac{1-y}{x-1}$	D. x+y-1	E. $\frac{2-xy}{y}$
182. If $y^2 - 2xy = 16$ then $\frac{dy}{dx} =$ A. $\frac{x}{y-x}$ B. $\frac{y}{x-y}$	2	D. $\frac{y}{2y-x}$	E. $\frac{2y}{x-y}$
183. If $x^{2} + xy + y^{3} = 0$ then in terms A. $-\frac{2x + y}{x + 3y^{2}}$ B. $-\frac{x + 3y^{2}}{2x + y}$		D. $\frac{-2x}{x+3y^2}$	$E. -\frac{2x+y}{x+3y^2-1}$
184. If $x^2 - 2xy + 3y^2 = 8$ then $\frac{dy}{dx}$ A. $\frac{8 + 2y - 2x}{6y - 2x}$ B. $\frac{3y - x}{y - x}$	C. $\frac{2x-2y}{6y-2x}$	D. $\frac{1}{3}$	E. $\frac{y-x}{3y-x}$
185. Find $\frac{dy}{dx}$ if $x^2 + y^2 = -2xy$ A. B. -1	C. $\frac{x-y}{x+y}$	D. $\frac{x+y}{x-y}$	E. $-\frac{x+2y}{x}$
186. Find y' if $y^2 - 3xy + x^2 = 7$ A. $\frac{2x + y}{3x - 2y}$ B. $\frac{3y - 2x}{2y - 3x}$	C C	C C	E. none of these
187. Given y is a differentiable function A. $\frac{3x^2}{x-3y^2}$ B. $\frac{3x^2-1}{1-3y^2}$			$\frac{y}{x} \in \frac{3x^2 + 3y^2}{x}$

188. If
$$y^2 = x + y^3$$
 then $y' =$
A. B. $\frac{1}{1+3y^2}$ B. $\frac{1}{2y-3y^2}$ C. $\frac{2x}{3-y^2}$ D. $\frac{1}{2y(1+y^2)}$ E. $\frac{1}{2y(1+3y^2)}$

189. Find
$$\frac{dy}{dx}$$
 for $2x^2 + xy + 3y^2 = 0$
A. $-\frac{4x + y}{x + 6y}$ B. $-\frac{4x + y}{6y}$ C. $4x + y + 6y$ D. $\frac{4x + 6y}{-x}$ E. none of these

190. Given y is a differentiable function of x, find $\frac{dy}{dx}$ for $3x^2 - 2xy + 5y^2 = 1$

A.
$$\frac{3x+y}{x-5y}$$
 B. $\frac{y-3x}{5y-x}$ C. $3x+5y$ D. $\frac{3x+4y}{x}$ E. none of these

191. If
$$x^{2} + y^{3} = x^{3}y^{2}$$
 then $\frac{dy}{dx} =$
A. $\frac{2x + 3y^{2} - 3x^{2}y^{2}}{2x^{3}y}$
B. $\frac{2x^{3}y + 3x^{2}y^{2} - 2x}{3y^{2}}$
C. $\frac{3x^{2}y^{2} - 2x}{3y^{2} - 2x^{3}y}$
D. $\frac{3y^{2} - 2x^{3}y}{3x^{2}y^{2} - 2x}$
E. $\frac{6x^{2}y - 2x}{3y^{2}}$

192. If
$$xy^2 - y^3 = x^2 - 5$$
 then $\frac{dy}{dx} =$
A. $\frac{y^2 - 2x}{3y^2 - 2xy} \stackrel{\text{B.}}{=} \frac{y^2 - 2x + 5}{3y^2 - 2xy} \stackrel{\text{C.}}{=} \frac{2x - 5}{2y - 3y^2} \stackrel{\text{D.}}{=} \frac{2x}{2y - 3y^2} \stackrel{\text{E.}}{=} \frac{x + y^2}{xy}$

^{193.} If $x^3 + 3xy + 2y^3 = 17$ then in terms of x and y $\frac{dy}{dx} =$ ^{A.} $-\frac{x^2 + y}{x + 2y^2}$ ^{B.} $-\frac{x^2 + y}{x + y^2}$ ^{C.} $-\frac{x^2 + y}{x + 2y}$ ^{D.} $-\frac{x^2 + y}{2y^2}$ ^{E.} $-\frac{x^2}{1 + 2y^2}$

194. Find
$$\frac{dy}{dx}$$
 for $e^y = xy$
A. $\ln x + \ln y$ B. $\frac{x+y}{xy}$ C. $\frac{xy}{x+y}$ D. $\frac{xy-x}{y}$ E. $\frac{y}{xy-x}$

195. Find y' if $\ln xy = x + y$ A. $-\frac{y}{x}$ B. C. $\frac{xy}{1-xy}$ D. $\frac{xy-y}{x-xy}$ E. none of these

196. Find y' if
$$xe^{y} + 1 = xy$$

A.
0
B. $\frac{y - e^{y}}{xe^{y} - x}$
C. $\frac{y}{e^{y} - x}$
D. $\frac{e^{y}}{xe^{y} - 1}$
E. none of these

197. Consider the curve $x + xy + 2y^2 = 6$ The slope of the line tangent to the curve at the point (2, 1) is A. <u>2</u> B. $\frac{1}{3}$ C. $-\frac{1}{3}$ D. $-\frac{1}{5}$ E. $-\frac{3}{4}$ 198. The equation of the tangent to the curve $2x^2 - y^4 = 1$ at the point (-1, 1) is B. y = 2 - xC. 4y + 5x + 1 = 0A. y = -xE. x - 4y + 5 = 0D. x - 2y + 3 = 0199. If $y^2 - 2xy = 21$ then $\frac{dy}{dx}$ at the point (2,-3) is A. $-\frac{6}{5}$ B. $-\frac{3}{5}$ C. $-\frac{2}{5}$ D. $\frac{3}{8}$ E. $\frac{3}{5}$ 200. The slope of the curve $y^2 - xy - 3x = 1$ at the point (0,-1) is A. -1 B. -2 C. 1 D. 2 E. -3 201. What is the slope of the line tangent to the curve $3y^2 - 2x^2 = 6 - 2xy$ at the point (3, 2) C. $\frac{7}{9}$ D. $\frac{6}{7}$ 4 9 E. $\frac{5}{3}$ A. 0 Β. 202. The slope of the line tangent to the graph of $3x^2 + 5\ln y = 12$ at (2, 1) is C. $\frac{5}{12}$ B. $\frac{12}{5}$ E. _7 D. 12 A. $-\frac{12}{5}$ 203. If $y = \ln(x^2 + y^2)$ then the value of $\frac{dy}{dx}$ at the point (1, 0) is A. 0 B. $\frac{1}{2}$ C. 1 D. 2 E. undefined 204. Consider the curve $5x - xy + y^2 = 7$ The slope of the line tangent to the curve at the point (1, 2) is A. -2 B. -1 C. 0 D. 1 E. 2 205. If $y^2 + xy = 6$ what is $\frac{dy}{dx}$ at the point (-1, 3) A. $-\frac{3}{5}$ B. $-\frac{3}{7}$ C. $\frac{3}{7}$ D. $\frac{3}{5}$ E. $\frac{6}{5}$

206. The equation of the line tangent to the curve $y^2 - 2x - 4y = 1$ at (-2, 1) is A. y = -x - 1 B. -y = -x - 3 C. 3y = -x + 1 D. 5y = -x + 3 E. none of these

	then at the point (
_	$\frac{B}{-\frac{4}{3}}$		D. $-\frac{1}{2}$	E. 0
208. If $7 = xy - e^{xy}$ A. $x - e^{y}$	then $\frac{dy}{dx} =$			
A. $x - e^{y}$	B. $v - e^x$	C. $ye^{xy} + y$	D. <u>-y</u>	E. $ye^{xy} + y$
	y e	$x - xe^{xy}$	x	$x + xe^{xy}$
209. Which is the slop				Го
A. $-\frac{5}{2}$	В. 0	$\frac{1}{8}$	D. <u>4</u> 7	$rac{1}{2}$
210. The slope of the	line tangent to the	curve $3x^2 - 2xy$	$y + y^2 = 11$ at the point of	oint (1,-2) is
A. $-\frac{1}{6}$	B. 0	C. 1	D. $\frac{5}{3}$	E. 10
211. Find an equation A.				
$y-1 = -\frac{x}{2y}$	(x-1)	$y+1 = -\frac{1}{2}(x+$	-1) C. y-	$-1 = \frac{1}{2}(x-1)$
D. $x+2y=3$	E.	none of these		
212	, h	,		
212. Suppose $x^2 - xy$				
				E. $\frac{b+2a}{2b+a}$
A. $\frac{a-2b}{2a-b}$	$B. \frac{b-2a}{2b-a}$	C. $\frac{a-2b}{2a+b}$	D. $\frac{b-2a}{2b+a}$	
A. $\frac{a-2b}{2a-b}$	$B. \frac{b-2a}{2b-a}$	C. $\frac{a-2b}{2a+b}$	D. $\frac{b-2a}{2b+a}$	
A. $\frac{a-2b}{2a-b}$	$B. \frac{b-2a}{2b-a}$	C. $\frac{a-2b}{2a+b}$	D. $\frac{b-2a}{2b+a}$	
A. $\frac{a-2b}{2a-b}$ 213. If $(x-y)^2 = y^2$ A. $\frac{2x-y}{2y-x}$	B. $\frac{b-2a}{2b-a}$ -xy then $\frac{dy}{dx} =$ B. $\frac{2x-y}{2x}$	C. $\frac{a-2b}{2a+b}$ C. $\frac{2x-y}{x}$	D. $\frac{b-2a}{2b+a}$ D. $\frac{2x+3y}{x}$	E. undefined
A. $\frac{a-2b}{2a-b}$	B. $\frac{b-2a}{2b-a}$ $-xy$ then $\frac{dy}{dx} =$ B. $\frac{2x-y}{2x}$ line tangent to the	C. $\frac{a-2b}{2a+b}$ C. $\frac{2x-y}{x}$ graph of $\ln(x+b)$	D. $\frac{b-2a}{2b+a}$ D. $\frac{2x+3y}{x}$	E. <i>undefined</i> where $x = 1$ is
A. $\frac{a-2b}{2a-b}$ 213. If $(x-y)^2 = y^2$ A. $\frac{2x-y}{2y-x}$ 214. The slope of the	B. $\frac{b-2a}{2b-a}$ $-xy$ then $\frac{dy}{dx} =$ B. $\frac{2x-y}{2x}$ line tangent to the B. 1 line tangent to the	C. $\frac{a-2b}{2a+b}$ C. $\frac{2x-y}{x}$ graph of $\ln(x+C)$ c. $e-1$ graph of $\ln(xy)$	D. $\frac{b-2a}{2b+a}$ D. $\frac{2x+3y}{x}$ $(x+y) = x^2$ at the point D. $2e-1$ = x at the point when	E. <i>undefined</i> where $x = 1$ is E. $e-2$ ere $x = 1$ is
A. $\frac{a-2b}{2a-b}$ 213. If $(x-y)^2 = y^2$ A. $\frac{2x-y}{2y-x}$ 214. The slope of the A. 0	B. $\frac{b-2a}{2b-a}$ $-xy$ then $\frac{dy}{dx} =$ B. $\frac{2x-y}{2x}$ line tangent to the B. 1 line tangent to the	C. $\frac{a-2b}{2a+b}$ C. $\frac{2x-y}{x}$ graph of $\ln(x+C)$ c. $e-1$ graph of $\ln(xy)$	D. $\frac{b-2a}{2b+a}$ D. $\frac{2x+3y}{x}$ $(x,y) = x^2$ at the point D. $2e-1$	E. <i>undefined</i> where $x = 1$ is E. $e-2$ ere $x = 1$ is
A. $\frac{a-2b}{2a-b}$ 213. If $(x-y)^2 = y^2$ A. $\frac{2x-y}{2y-x}$ 214. The slope of the A. 0 215. The slope of the A. 0	B. $\frac{b-2a}{2b-a}$ $-xy$ then $\frac{dy}{dx} =$ B. $\frac{2x-y}{2x}$ line tangent to the B. 1 line tangent to the B. 1	C. $\frac{a-2b}{2a+b}$ C. $\frac{2x-y}{x}$ graph of $\ln(x+C)$ c. $e-1$ graph of $\ln(xy)$	D. $\frac{b-2a}{2b+a}$ D. $\frac{2x+3y}{x}$ $(x+y) = x^2$ at the point D. $2e-1$ = x at the point when	E. <i>undefined</i> where $x = 1$ is E. $e-2$ ere $x = 1$ is
A. $\frac{a-2b}{2a-b}$ 213. If $(x-y)^2 = y^2$ A. $\frac{2x-y}{2y-x}$ 214. The slope of the A. 0 215. The slope of the A. 0 216. If $e^{xy} = \ln x$ th	B. $\frac{b-2a}{2b-a}$ $-xy$ then $\frac{dy}{dx} =$ B. $\frac{2x-y}{2x}$ line tangent to the B. 1 line tangent to the B. 1 en $\frac{dy}{dx} =$	C. $\frac{a-2b}{2a+b}$ C. $\frac{2x-y}{x}$ graph of $\ln(x+C)$ C. $e-1$ graph of $\ln(xy)$ C. e	D. $\frac{b-2a}{2b+a}$ D. $\frac{2x+3y}{x}$ $(x+y) = x^2$ at the point D. $2e-1$ = x at the point when	E. <i>undefined</i> where $x = 1$ is E. $e-2$ ere $x = 1$ is E. $1-e$

217.		efined by $x^{3} + xy - y^{2} = \frac{1}{3}$ B. 1.037			x = E. 2.154	
218.		The line tangent to the c B. $-\frac{3}{4}$			E. $\frac{3}{2}$	
219.		$3y^2 - 3xy + 2x^3 = 7$ ha B. $2x = y$			E. $x = 3y$	
220.		then at the point (1, ln B. 2 ln 2		D. –2 <i>e</i>	E. – 4 ln 2	
221.	The slope of	$9x - 4x \ln y = 3 \text{at} \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$	$\left(\frac{1}{3}, 1\right)$ is	D 45	_	
222		B. 5		D. $\frac{27}{4}$	E. 9+4ln3	
	A. -0.896	$xy + e^{y} = 6$ what is $y' = 0$ B. 0.896		D. –1.792	E. 0	
	If $y^2 - 3x = A$. $\frac{-9}{4y^3}$	= 7 then $\frac{d^2 y}{dx^2}$ = B. $\frac{3}{2y}$	C. 3	D. $\frac{-3}{y^3}$	$E. \frac{-6}{7y^3}$	
224. If a point moves on the curve $x^2 + y^2 = 25$, then, at (0, 5), $\frac{d^2 y}{dx^2}$ is A. 0 B. 1 C5 D1 E. nonexistent						
225.	-	$\begin{array}{c} B. \ \frac{1}{5} \\ - \ \cdot \ \cdot \ d^2 v \end{array}$	-5	D. $-\frac{1}{5}$	E. nonexistent	
		= 7 then $\frac{d^2 y}{dx^2}$ = B. $\frac{-3}{y^3}$	C. 3	D. $\frac{3}{2y}$	$E. \frac{-9}{4y^3}$	
226.	$\frac{11}{dx} = \sqrt{1}$	$\overline{-y^2}$, then $\frac{d^2y}{dx^2} =$ B. -y	C. $-\frac{y}{\sqrt{1-y^2}}$	D. y	E. <u>1</u> 2	

227. f'(x)g'(x)f(x)g(x)x The table gives values of f, f', g and g' at selected -1 6 5 3 -2 values of x If h(x) = f(g(x)) then h'(1) =1 3 -3 -1 2 3 -2 2 1 3 B. 6 C. 9 Ε. A. 5 D. 10 12 228. If $f(x) = \frac{4}{x-1}$ and g(x) = 2x then the solution set of f(g(x)) = g(f(x)) is D. -1, 2 E. $\frac{1}{3}$, 2 C. 3 B. 2 A. $\frac{1}{3}$ 229. Let f and g be differentiable functions such that

$$f(1) = 2$$
 $f'(1) = 3$ $f'(2) = -4$ $g(1) = 2$ $g'(1) = -3$ $g'(2) = 5$ If $h(x) = f(g(x))$ then $h'(1) =$ A. -9B. -4C. 0D. 12E. 15

230. If *f* and *g* are twice differentiable and if
$$h(x) = f(g(x))$$
, then $h''(x) = A$.
A. $f''(g(x))[g'(x)]^2 + f'(g(x))g''(x)$
B. $f''(g(x))g'(x) + f'(g(x))g''(x)$
C. $f''(g(x))[g'(x)]^2$
D. $f''(g(x))g''(x)$
E. $f''(g(x))$

231. Let f and g be differentiable functions such that

$$f(1) = 4, \quad g(1) = 3, \quad f'(3) = -5$$

$$f'(1) = -4, \quad g'(1) = -3, \quad g'(3) = 2$$

If $h(x) = f(g(x))$ then $h'(1) =$
A. -9 B. 15 C. 0 D. -5

232.

The function \mathbf{F} is defined by

$$\mathbf{F}(x) = G\left[x + G(x)\right]$$

where the graph of the function G is shown on the right.

The approximate value of F'(1) =

A.
$$\frac{7}{3}$$
 B. $\frac{2}{3}$ C. -2

E. -12

234. The composite function h is defined by h(x) = f[g(x)] where f and g are functions whose graphs are shown below.

E. 7

The number of horizontal tangent lines to the graph of h is A. 3 B. 4 C. 5 D. 6

Β.

- 235. The graphs of functions f and g are shown at the right. If h(x) = f[g(x)], which of the following statements are true about the function h
 - I. h(2) = 5
 - **II**. *h* is increasing at x = 4
 - III. The graph of h has a horizontal tangent at x = 1
 - A. I only
 - D. II and III only E. I, II and III

236.

The second derivative of the function f is given by $f''(x) = x(x-a)(x-b)^2$ The graph of f''is shown in the diagram. For what values of xdoes the graph of f have a point of inflection ?

A. 0 and a only B. 0 and m only C. b and j only D. 0, a and b E. b, j and k

240. The function f is defined by $f'(x) = (x-2)^2(x-7)^3$ The graph of f has an inflection point where x =

A. 4 only B. 7 only C. 2 and 4 only D. 2 and 7 only E. 2, 4 and 7

241. The function defined by $f(x) = (x-1)(x+2)^2$ has inflection points at x = A. -2 only B. -1 only C. 0 only D. -2 and 0 only E. -2 and 1 only

242. For some key values of x, the values of f(x), -2 2 x -8 -4 0 4 -6 f'(x), and f''(x) are given in the table. The -2 f(x)0 5 0 -4 -6 -4 equation of the tangent to the curve y = f(x)f'(x)4 -2 -1 0 -4 0 1 at the point of inflection shown in the table is: f''(x)-2 -2 0 1 4 3 -6 B. y = 4x + 8 C. y = -6x + 24 D. y = -2x - 6 E. y = -x + 3A. v = 4x

243. Which of the following statements are true about the function f if its derivative f' is defined

by $f'(x) = x(x-a)^3$ where a > 0I. The graph of f is increasing at x = 2aII. The function f has a local maximum at x = 0III. The graph of f has an inflection point at x = aA. I only B. I and II only C. I and III only D. II and III only E. I, II and III

244. If
$$f'(x) = x^3(x+2)^2$$
 then the graph of f has inflection points when $x = A$.
A. -2 only B. 0 only C. -2 and 0 only
D. -2 and $-\frac{6}{5}$ only E. $-2, -\frac{6}{5}$ and 0

245. If $f'(x) = -5(x-3)^2(x-2)$ which of the following features does the graph of f(x) have?

- A. a local minimum at x = 2 and a local maximum at x = 3
- B. a local maximum at x = 2 and a local minimum at x = 3
- C. a point of inflection at x = 2 and a local minimum at x = 3
- D. a local minimum at x = 2 and a point of inflection at x = 3
- E. a local maximum at x = 2 and a point of inflection at x = 3

246. A function f(x) exists such that $f''(x) = (x-2)^2(x+1)$. How many points of inflection does f(x) have ?

- A. none B. one C. two
- D. three E. cannot be determined

247. $f(x) = x^2 - 3x^3$ has a point of inflection at

- A. x = 0 B. $x = \frac{1}{9}$ C. $x = \frac{2}{9}$ D. $x = \frac{1}{3}$
- E. There is no inflection point

248. The graph of $y = 2x^3 + 5x^2 - 6x + 7$ has a point of inflection at x =

A. <u>5</u>	B.	C. <u>5</u>	D. 5	E2
$-\frac{1}{3}$	U	$-\frac{1}{6}$	$\overline{2}$	-2

249. The number of in A. 0		the curve $f(x) = x^2$ C. 2		E. 4
250. An equation of the A. $y = -6x - 6$		$y = x^3 + 3x^2 + 2$ at C. $y = 2x + 10$		
251. If the graph of y A. -3 E. It cannot be	B. 0	has a point of inf C. 1 e information giver	D	what is the value of <i>b</i> . 3
252. At what value of A. 0	x does the graph of B. 1	of $y = \frac{1}{x^2} - \frac{1}{x^3}$ h C. 2	ave a point of infle D. 3	ction ? E. <i>at no value of x</i>
253. What is the value $A = b^2$	of k such that the	curve $y = x^3 - \frac{k}{x}$	has a point of infle	ection at $x = 1$ E. <i>none of these</i>
254. The curve $y = x^2$	$5 + 10x^4 - 5$ has po		<i>x</i> =	
255. The curve $y = 1$.	$-6x^2 - x^4$ has influence		=	
256. The slope of the l A. -27				e point of inflection is E. <i>none of these</i>
257. The curve $y = 3$. A. 1 only		has points of inflec C. -1 and $-\frac{1}{3}$		E. 1 and $\frac{1}{3}$
258. The equation of the A. $y = 0$	-	the curve $f(x) = 2$. C. $y = -x$		
259. An equation for the A. $12x - y = 3$				point of inflection is E. $12x - y = 35$
	$x^{5} - 5x^{4} + 3x - 2$ have $x = 0$ have	(0,-2) only	ion at C. (1,-	- 1) only

261.	If the graph of f	$f(x) = 2x^2 + \frac{k}{x}$ has	a point of inflectio	In at $x = -1$ then the	e value of k is
	A2			D. 1	E. 2
262.		$= x^4 + bx^2 + 8x + 1$ What must be the			f inflection for the
	А. -6	B1	C. 1	D. 4	E. 6
263.	How many points A. none	s of inflection does B. one	the graph of $y = 2$ C. two		c+2 have? E. four
264.	A. 0	B. 4	 8 has a point of inf C. 8 nined from the give 	D	what is the value of <i>b</i> . 12
265.			nt of inflection on th		
	A2	B1	C. 0	D. 1	E. 2
266.	What is the x -co A. -9	bordinate of the poin $B5$	t of inflection of th C. -1		$+3x^{2}-45x+81$ E. 3
267.	What are the x-c $f(x) = 3x^4 - 4x^3$	-	oints of inflection o	n the graph of the f	function
			C. 1 only	D. 0 and $\frac{2}{3}$	E. 0 and 1
268.			$x^2 + 2$, at what x v	value(s) is/are the in	flection point(s) ?
	A. $x = \frac{4}{9}$	В.	$x = 0$ and $x = \frac{8}{9}$	C. $x = 0$	
	D. $x = 0, x = \frac{4}{9}$	and $x = \frac{8}{9}$ E.	$x = 0$ and $x = \frac{4}{9}$		
269.	How many inflec A. 0	etion points does 3 B. 1	$5x^4 - 5x^3 - 9x + 2$ C. 2	have ? D. 3	E. 4
270. What is the x-coordinate of the point of inflection on the graph of $y = \frac{2}{3}x^3 - 2x^2 + 7$					
	A1	B. 1	C. 2	D. $\frac{13}{3}$	$E. \frac{17}{3}$
271.	What is the x -co A. -2	bordinate of the poin $B1$	nt of inflection for t C. 0	he graph of $y = x^3$ D. 1	$x^{2} + 3x^{2} - 1$ E. 2

272. A particle moves along the x-axis so that its position at time t is $x(t) = 2t^2 - 7t + 3$ (x in cm and t in seconds). What is the velocity (in cm/sec) at time t = 2 seconds? В. **–3** C. 1 D. 4 E. none of these A. -6 273. A particle moves along the x-axis according to the function $x(t) = t^2 - 4t + 3$, where x (metres) is the position of the particle at time t (seconds). At what time t does the particle have a velocity of 6 m/sC. 5 D. 8 A. 1 B. 2 E. none of these 274. A particle moves along the x-axis so that its position at time t is $x(t) = 3t^3 + 2t^2 + 7$ where x is in meters and t is in seconds. Find the velocity at t = 2 seconds. E. none of these A. 26 m/s B. 39 m/s C. 42 m/s D. 44 m/s 275. A particle moves along the x-axis according to the position function $x(t) = 2t^3 - 6t^2 + 9$ where x is in meters and t is in seconds. Find the value(s) of t when the particle is stationary. C. t=0, t=-2 D. t=0, t=2 E. none of these A. t = 0B. t=2276. A particle moves along the x-axis so that its position at time t is $x(t) = t^2 - 2t + 5$ where x is in centimeters and t is in seconds. At what time is the particle's velocity 4 cm/s $\mathsf{B}.\quad t=3$ C. t = 6D. t = 13E. none of these A. t = 1277. An object moves along the x-axis so that its position at time t is $x = t^2 - 3t + 5$ where x is in meters and t is in seconds. At what time(s) is its velocity 5 m/sA. t = 1B. t = 4C. t = 7D. t = 0 or 3 E. none of these 278. A particle moves along the x-axis according to the position function $x(t) = 2t^3 - 6t + 1$ where x is in meters and t is in seconds. For what values of t is the particle moving to the right? A. -1 < t < 1B. t < -1 or t > 1C. all values of t D. no values of t 279. The position of an object moving in a straight path is given by $x(t) = kt^2 + 12t$, where x is in meters and t is in seconds. Find the value of k if the velocity of the object is 4 m/s when t = 2 seconds. B. -6 C. -3 D. -2 E. none of these A. -12

280. A particle moves along the x-axis according to the position function $x(t) = t^3 - 4t^2 + 3$ (x in meters, t in seconds). Determine the velocity in m/s at t = -2A. -21 B. 4 C. 28 D. 31 E. none of these

281.			according to the pos 1 sec) when the velo		$t) = t^2 - t (x \text{ in cm},$
	A. 0.5	B. 4	C. 6.5	•	E. none of these
282.			is, its distance from econds. At what the C. 3 s	me is the velocity 1	h by $x(t) = 3t^2 - 4t + 10$ 4 m/s E. none of these
283.	f'(2) represent $f'(2)A. the velocity a$?	B. tł	<i>t</i> seconds, is given the time when the vane distance at time	2
284.	-	-	velocity of the part	icle zero ?	h by $x = t^2 - 6t + 5$ E. none of these
285.		interval from $t = 1$	ding to the distance to $t = 12$, how me C. 2		$t^{3} - 21t^{2} + 60t + 13$ paticle reverse its E. 4
286.	$x(t)=2t^3-21t^2$	+72t - 5 At what B.	so that at time $t \ge 0$ t time t is the partic t=3 only t=3 and $t=4$	cle at rest ?	
287.	-		long a straight line eration of the partic C. 4		ven by E. 12
288.		of t is the particle	so that at any time at rest ? C. $\frac{1}{2}$ only		
289.	-	-	so that at any time alues of t is the pa	-	s given by

C. 3 only

D. 5 only

E. 1 and 3

A. no values B. 1 only

290. A particle starts at time t = 0 and moves along a number line so that its position, at time $t \ge 0$ is given by $x(t) = (t-2)^3(t-6)$ The particle is moving to the right for A. 0 < t < 5B. 2 < t < 6 C. t > 5D. $t \ge 0$ E. never 291. The formula $x(t) = \ln t + \frac{t^2}{18} + 1$ gives the position of an object moving along the x-axis during the time interval $1 \le t \le 5$ At the instant when the acceleration of the object is zero, the velocity is $\frac{2}{3}$ Β. Ε. Α. C. D. $\frac{1}{3}$ 1 0 undefined 292. Which of the following must be true about a particle that starts at t = 0 and moves along a number line if its position at time t is given by $s(t) = (t-2)^3(t-6)$ I. The particle is moving to the right for t > 5II. The particle is at rest at t = 2 and t = 6III. The particle changes direction at t = 2A. I only B. II only C. III only D. I and III only E. none 293. A particle starts at time t = 0 and moves along a number line so that its position, at time $t \ge 0$, is given by $x(t) = (t-2)(t-6)^3$ The particle is moving to the left for C. 3 < *t* < 6 A. t > 3B. 2 < t < 6D. $0 \le t < 3$ E. t > 6294. The position function of a moving particle on the x-axis is given as $s(t) = t^3 + t^2 - 8t$ for $0 \le t \le 10$ For what values of t is the particle moving to the right ? C. $t < \frac{4}{3}$ D. $0 < t < \frac{4}{3}$ E. $t > \frac{4}{3}$ A. t < -2B. t > 0295. A particle is moving along the x-axis. Its position at time t > 0 is e^{2-t} What is its acceleration when t = 2D. –1 A. e C. 0 E. -e B. 1 296. A particle is moving along the x-axis. Its position at time t > 0 is $\ln(2t^{\frac{3}{2}} + 1)$ What is its speed when t = 4A. 2.01 C. 0.353 D. 4.63 B. **3.06** E. 7.81 297. A particle moves along the x-axis so that its position at time t is given by $x(t) = 4t^3 - 33t^2 + 30t + 12$, where t is measured in seconds and x is measured in meters. a) Determine the velocity, in m/s, of the particle at time t = 2 seconds b) Determine the time(s), in seconds, when the particle is stationary

298. A particle moves along the x-axis such that its distance from the origin is given by $x(t) = 2t^2 + 60t$ where x is in centimeters and t is in seconds. When the particle's velocity is 72 cm/sec, determine its distance x(t) from the origin.

- 299. A particle moves along the x-axis so that its position at time t is $x(t) = 4t^3 21t^2 + 30t$ where t is measured in seconds, and x is measured in meters.
 - *a*) Determine the time(s) when the particle is stopped.
 - **b**) Determine when the particle is moving to the left
- 300. A particle moves along the x-axis so that its position at time t is $x(t) = 2t^3 5t^2 4t + 3$ (x in cm and t in seconds.)
 - a) At what time(s) is the particle stationary?
 - **b**) At what time(s) is the particle moving to the left ?
- 301. Given the function $f(x) = x^3 3x + 5$ determine
 - a) the equation of the tangent line at x = 2
 - b) the x-values where the slope of the tangent line is equal to 0
- 302. A particle moves along the x-axis so that its position at time t is $x(t) = 2t^3 9t^2 + 12t$ (x in cm and t in seconds)
 - a) Determine the time(s) when the particle is stopped
 - b) Determine the velocity of the particle at time t = 3 seconds
- 303. A particle moves along the x-axis so that its position at time t is $x(t) = 4t^3 21t^2 + 18t + 3$ where t is measured in seconds and x is measured in meters.
 - *a*) Determine an equation for the velocity function
 - b) Determine the velocity at time t = 2
 - c) Determine the time(s) when the particle is stationary

304. A particle moves along the x-axis in such a way that its position at time t is given by $x(t) = 3t^4 - 16t^3 + 24t^2$ for $-5 \le t \le 5$

- a) Determine the velocity and acceleration of the particle at time t
- b) At what values of t is the particle at rest?
- c) At what values of t does the particle change direction ?
- *d*) What is the velocity when the acceleration is first zero ?
- 305. A particle moves along the x-axis in such a way that its position at time t for $t \ge 0$ is given

by
$$x(t) = \frac{1}{3}t^3 - 3t^2 + 8t$$

- a) Show that at time t = 0, the particle is moving to the right.
- b) Find all values of t for which the particle is moving to the left.
- c) What is the position of the particle at time t = 3
- *d*) When t = 3, what is the total distance the particle has traveled ?

1. Answer is C.

Find the derivative of $f(x) = 4x^2 + 7x - 5$

f'(x) = 8x + 7

2. Answer is D.

Difficulty = 0.95 U

- Given $f(x) = 3x^2 4x + 5$ find f'(x)f'(x) = 6x - 4
- 3. Answer is C.

If
$$y = 3x^3 - 4x^2 + 5$$
 find $\frac{dy}{dx}$
 $\frac{dy}{dx} = 3(3x^2) - 4(2x) + 0 = 9x^2 - 8x$

4. Answer is A.

Find
$$\frac{dy}{dx}$$
 if $y = -3x^2 + 6x$
 $\frac{dy}{dx} = -3(2x^1) + 6(1x^0) = -6x^2 + 6$

5. Answer is A.

Difficulty = 0.84 K

Find
$$f'(x)$$
 if $f(x) = 3$ $f'(x) = 0$

6. Answer is A.

Difficulty = 0.79 K

Given that *r* is any real number, determine
$$\frac{d}{dx}(x')$$

$$\frac{dy}{dx} = \boxed{rx^{r-1}}$$

Difficulty =
$$0.93 \text{ U}$$

Difficulty = 0.89 U

Name: _____

Difficulty = 0.96 K

If
$$f(x) = \frac{3}{x}$$
 then $f'(x) =$
 $f(x) = \frac{3}{x} = 3x^{-1}$
 $f(x) = 3(-1x^{-2}) = \boxed{-\frac{3}{x^2}}$

8. Answer is A.

Difficulty =
$$0.64 \text{ U}$$

_

Find
$$\frac{dy}{dx}$$
 if $y = 2\sqrt{x}$
$$y = 2\sqrt{x} = 2x^{\frac{1}{2}}$$
$$y = 2(\frac{1}{2}x^{-\frac{1}{2}}) = \boxed{\frac{1}{\sqrt{x}}}$$

9. Answer is C.

Difficulty = 0.63 U

If
$$f(x) = \sqrt{x}$$
 determine the value of $f'(x)$ at (16, 4)
 $f(x) = \sqrt{x} = x^{\frac{1}{2}}$
 $f'(x) = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$
 $f'(16) = \frac{1}{2\sqrt{16}} = \boxed{\frac{1}{8}}$

10. Answer is D.

Difficulty = 0.46 H

If
$$f(x) = k\sqrt{x}$$
 determine the value of the constant k so that $f'(4) = 6$

$$f(x) = k\sqrt{x} = kx^{\frac{1}{2}}$$

$$f'(x) = k(\frac{1}{2}x^{-\frac{1}{2}}) = \frac{k}{2\sqrt{x}}$$

$$f'(4) = \frac{k}{2\sqrt{4}} = 6 \quad \leftarrow f'(4) = 6$$

$$\frac{k}{4} = 6$$

$$\frac{k}{4} = 6$$

$$\frac{k}{4} = 4$$

For the curve $y = x^k$ ($k \neq 0$), the slope of the tangent is equal to 16k when x = 2Determine the value of k

$$y' = kx^{k-1}$$

y'(2) = k(2)^{k-1} = 16k
(2)^{k-1} = 16
(2)^{k-1} = 2^{4}
k - 1 = 4

k = 5

12. Answer is B.

Given
$$f(x) = \frac{5}{x^2}$$
 determine $f'(x)$
 $f(x) = \frac{5}{x^2} = 5x^{-2}$
 $f'(x) = 5(-2x^{-3}) = \boxed{-\frac{10}{x^3}}$

13. Answer is B.

Given
$$y = \frac{1}{x^3}$$
 determine $\frac{dy}{dx}$
 $y = \frac{1}{x^3} = x^{-3}$
 $\frac{dy}{dx} = -3x^{-4} = \boxed{-\frac{3}{x^4}}$

14. Answer is B.

Find y' if
$$y = x^{\frac{3}{2}}$$

 $y' = \frac{3}{2}x^{\frac{3-2}{2}} = \boxed{\frac{3}{2}x^{\frac{1}{2}}}$

15. Answer is A.

Which of the following represents the *slope* of the tangent to f(x) at x = 2

slope of the tangent at any point x is f'(x)slope of the tangent at x = 2 is f'(2)

Given
$$f(x) = \frac{1}{x}$$
 determine $f'(x)$
 $f(x) = \frac{1}{x} = x^{-1}$
 $f'(x) = -1x^{-2} = \boxed{-\frac{1}{x^2}}$

17. Answer is A.

If
$$y = 7$$
 determine $\frac{dy}{dx}$
 $\frac{dy}{dx} = \boxed{0}$

18. Answer is A.

Evaluate the derivative of the function
$$f(x) = 3x^2 - 2x - 1$$
 at the point where $x = 0$
 $f'(x) = 3(2x) - 2 - 0 = 6x - 2$
 $f'(0) = 6(0) - 2 = \boxed{-2}$

19. Answer is D.

Evaluate the derivative of
$$f(x) = 2x^2 - 3x + 2$$
 at the point where $x = 2$

$$f'(x) = 2(2x) - 3 = 4x - 3$$

$$f'(2) = 4(2) - 3 = 5$$

20. Answer is D.

Given
$$f(x) = (2x-3)^2$$
 determine $f'(x)$
 $f(x) = 4x^2 - 12x + 9 \quad \leftarrow \text{ or use } chain \text{ rule if you know it}$
 $f'(x) = \boxed{8x - 12}$

21. Answer is A.

Given the function $f(x) = \sqrt{2}$ determine f'(x)f'(x) = 0

22. Answer is A.

If
$$f(x) = 6g(x)$$
 then $f'(x)$ equals
 $f'(x) = 6(g'(x)) = 6g'(x)$

For what condition is f(x) increasing?

$$y = f(x)$$
 is *increasing* \Rightarrow $f'(x)$ is *positive* \leftarrow MUST know !!!

24. Answer is B.

Difficulty = 0.72 U

Find k such that the function $f(x) = kx^2 + 12x - 4$ has a <u>critical point</u> at x = 4f'(x) = 2kx + 12 f'(4) = 2k(4) + 12 = 0 8k = -12 $k = \frac{-12}{8} = \boxed{-\frac{3}{2}}$

25. Answer is C.

Determine all values of x such that the function $f(x) = x^3 - 3x^2 + 5$ is decreasing. $f'(x) = 3x^2 - 6x = 0$ (parabola opening up) 3x(x-2) = 0 $\overline{x=0 \ x=2}$ \leftarrow zeros of f'(x) f'(x) is *negative* on interval 0 < x < 2 so f(x) is *decreasing* on the interval 0 < x < 2

26. Answer is B.

Find the x-value of the point on the graph of $y = x^2 - x$ where the slope of the tangent is 2 y' = 2x - 1 = 2 $y = x^2 - x$ 2x = 3 $y(\frac{3}{2}) = (\frac{3}{2})^2 - (\frac{3}{2})$ $\boxed{x = \frac{3}{2}}$ $y(\frac{3}{2}) = \frac{9}{4} - \frac{6}{4} = \frac{3}{4}$ At the point $(\frac{3}{2}, \frac{3}{4})$ the slope of the tangent m = 2

Give all values of x where the function $f(x) = x^{3} - 3x + 4 \text{ is increasing}$ $f'(x) = 3x^{2} - 3 = 0 \quad \leftarrow \text{ opening } up$ $3(x^{2} - 1) = 0$ 3(x - 1)(x + 1) = 0 $\overline{x = 1} \quad x = -1 \quad \leftarrow \text{ zeros of } f'(x)$ Function is increasing if f'(x) > 0 $\boxed{\begin{array}{c} f'(x) > 0 \\ \hline x < -1 \\ f(x) \text{ increasing} \end{array}} \quad or \quad \underbrace{\begin{array}{c} f'(x) > 0 \\ \hline x > 1 \\ \hline x > 1 \\ \hline x < -1 \\ \hline x < 1 \\ \hline x$

If f'(x) = -6x determine all values of x such that f(x) is <u>decreasing</u> f'(x) < 0Function is decreasing if f'(x) < 0Example $f(x) = -3x^2 + 4$ $f'(x) = -6x < 0 \leftarrow$ divide by negative 6 and change direction of inequality f'(x) < 0f(x) < 0f(x) < 0f(x) < 0f(x) < 0

31. Answer is A.

Determine the x-values of the critical points for the function $f(x) = x^3 + 3x^2 - 24x$

$$f(x) = x^{3} + 3x^{2} - 24x$$

$$f'(x) = 3x^{2} + 6x - 24 = 0$$

$$x^{2} + 2x - 8 = 0$$

$$(x+4)(x-2) = 0$$

$$\overline{x = -4 \ x = 2} \quad \leftarrow x \text{-values of the critical points}$$

32. Determine all values of x such that the function

$$f(x) = x^{4} - 18x^{2} + 8 \text{ is decreasing.}$$

$$f(x) = x^{4} - 18x^{2} + 8$$

$$f'(x) = 4x^{3} - 36x = 0$$

$$4x(x^{2} - 9) = 0$$

$$4x(x - 3)(x + 3) = 0$$

$$\overline{x = -3 | x = 0 | x = 3} \leftarrow \text{critical numbers}$$

$$f'(x) = 4x(x - 3)(x + 3) < 0$$

-2 < x < 0 or x > 2

33. Determine all values of x such that the function $f(x) = x^{4} - 8x^{2} - 9$ is increasing $f'(x) = 4x^{3} - 16x = 0$ $4x(x^{2} - 4) = 0$ 4x(x - 2)(x + 2) = 0 $\boxed{x = 0} \quad \boxed{x = 2} \quad \boxed{x = -2} \quad \leftarrow critical \text{ numbers}$ $f'(x) = 4x(x - 2)(x + 2) > 0 \quad \leftarrow \quad f(x) \text{ increasing}$

34. a) Determine the x values of the critical points of $f(x) = x^4 - 8x^2$ $f'(x) = 4x^3 - 16x = 0$ $4x(x^2 - 4) = 0$ 4x(x-2)(x+2) = 0 $\boxed{x=0}$ $\boxed{x=2}$ $\boxed{x=-2}$

b) For what values of x is $f(x) = x^4 - 8x^2$ decreasing? f'(x) = 4x(x-2)(x+2) < 0 f(x) is decreasing for: $-2 \quad 0 \quad 2$ $x < -2 \quad \text{or} \quad 0 < x < 2$ or $-2 < x < 0 \quad \text{or} \quad x > 2$

Difficulty = 0.49 U

For the function $f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 - 6x$, find the *x*-coordinate of the critical point where the local *minimum* point occurs.

$$f'(x) = \frac{1}{3}(3x^2) + \frac{1}{2}(2x) - 6(1)$$

$$f'(x) = x^2 + x - 6 = 0$$

$$(x+3)(x-2) = 0$$

$$\overline{x = -3} \quad x = 2 \quad \leftarrow \text{ critical numbers}$$

$$f''(x) = 2x + 1 \quad (\text{at critical numbers})$$

$$f''(x) = 2x + 1 \quad (\text{at critical numbers})$$

$$f''(x) = 2x + 1 \quad (\text{at critical numbers})$$

$$f''(x) = 2x + 1 \quad (\text{at critical numbers})$$

$$f''(x) = 2x + 1 \quad (\text{at critical numbers})$$

$$f''(x) = 2(-3) + 1 = -5$$

$$\text{At } x = -3 \quad f(x) \text{ is concave } \underline{\text{down}} \rightarrow \text{Max}$$

$$f''(2) = 2(2) + 1 = +5$$

$$\text{At } \underline{x = 2} \quad f(x) \text{ is concave } \underline{\text{up}} \rightarrow \underline{\text{Min}}$$

37. Answer is B.

Difficulty = 0.46 U

Find the minimum value of the function $f(x) = 2x^2 - 12x + 6$

$f(x) = 2x^{2} - 12x + 6$ f'(x) = 4x - 12 = 0	f''(x) = 4 (positive) \therefore at critical number $x = 3$	$f(x) = 2x^2 - 12x + 6$
$\begin{array}{c} y'(x) = 1x 12 = 0 \\ 4x = 12 \end{array}$	there is a <i>minimum</i>	$f(3) = 2(3)^2 - 12(3) + 6$
Critical number $\rightarrow x = 3$	(concave up)	$f(3) = -12 \leftarrow \text{minimum value}$

38. Answer is B.

Difficulty = 0.45 U

Determine the *minimum* value of the function $f(x) = 3x^2 - 12x + 13$

f'(x) = 6x - 12 = 0 6x = 12Critical number $\rightarrow x = 2$ f''(x) = 6 (positive) $\therefore \text{ concave up}$ $f(x) = 3x^2 - 12x + 13$ $f(2) = 3(2)^2 - 12(2) + 13 = 1 \text{ (minimum value)}$ Vertex of parabola (2, 1)
Parabola opens *up* so minimum value is 1

Difficulty = 0.43 U

Determine the *minimum* value of the function $g(x) = 2x^2 - 12x + 25$

f'(x) = 4x - 12 = 0	$f(x) = 2x^2 - 12x + 25$
4x = 12 Critical number $\rightarrow x = 3$ f''(x) = 4 (positive)	$f(3) = 2(3)^2 - 12(3) + 25 = \boxed{7} \leftarrow \text{minimum value}$ Vertex of parabola (3, 7)
∴ concave up	Parabola opens <i>up</i> so minimum value is 7

40. Answer is B.

Difficulty = 0.43 U

Determine the *minimum* value of the function
$$y = 3x^2 - 24x - 7$$

$$f'(x) = 6x - 24 = 0$$

$$6x = 24$$

Critical number → x = 4

$$f''(x) = 6 \text{ (positive)}$$

∴ concave up

$$f'(x) = 6 \text{ (positive)}$$

$$f(x) = 3x^2 - 24x - 7$$

$$f(4) = 3(4)^2 - 24(4) - 7 = -55 \text{ (minimum value)}$$

Vertex of parabola (4, -55)
Parabola opens up so minimum value is -55

41. Answer is C.

Difficulty = 0.41 U

Find the *maximum* value of the function $y = -13 - 6x - x^2$

y' = -2x - 6 = 0 -6 = 2xCritical number $\rightarrow -3 = x$ y'' = -2 (negative) $\therefore \text{ concave down}$ $y = -x^2 - 6x - 13$ $y(-3) = -(-3)^2 - 6(-3) - 13 = \boxed{-4}$ Vertex of parabola (-3, -4) Parabola opens *down* so maximum value is -4

42. Answer is C.

Difficulty = 0.38 H

If $y = 2ax + bx^2$ and *a* and *b* are positive constants, determine the minimum value of y

Parabola opening
$$up$$

 $y' = 2a + 2bx = 0$
 $2bx = -2a$
 $x = -\frac{a}{b}$
Find coordinates of vertex
and y-value is minimum
 $y(x) = 2ax + bx^{2}$
 $y(-\frac{a}{b}) = 2a\left(-\frac{a}{b}\right) + b\left(-\frac{a}{b}\right)^{2}$
 $y(-\frac{a}{b}) = \frac{-2a^{2}}{b} + \frac{a^{2}}{b} = \left[-\frac{a^{2}}{b}\right]$
Vertex $\left(-\frac{a}{b}, -\frac{a^{2}}{b}\right)$

Determine the *maximum* value of the function $f(x) = -2x^2 - x + 6$

f'(x) = -4x - 1 = 0 -1 = 4x	$f(x) = -2x^2 - x + 6$
Critical number $\rightarrow -\frac{1}{4} = x$	$f(-\frac{1}{4}) = -2(-\frac{1}{4})^2 - (-\frac{1}{4}) + 6 = 6.125 \leftarrow \text{maximum value}$
f''(x) = -4 (negative)	Vertex of parabola $(-\frac{1}{4}, 6.125)$
\therefore concave down	Parabola opens <i>down</i> so maximum value is 6.125

44. Answer is C.

Find the <i>minimum</i> value of the function $f(x) = 2x^2 - 12x + 25$		
$f'(x) = 4x - 12 = 0$ $4x = 12$ Critical number $\rightarrow x = 3$ $f''(x) = 4 \text{ (positive)}$ $\therefore \text{ concave up}$	$f(x) = 2x^{2} - 12x + 25$ $f(3) = 2(3)^{2} - 12(3) + 25 = \boxed{7} \leftarrow \text{minimum value}$ Vertex of parabola (3, 7) Parabola opens <i>up</i> so minimum value is 7	

45. Answer is A.

46. Answer is D.

Determine the <i>maximum</i> value of the function $f(x) = 2 - 18x - 3x^2$		
f'(x) = -6x - 18 = 0 -18 = 6x Critical number → -3 = x f''(x) = -6 (negative) ∴ concave down	$f(x) = 2 - 18x - 3x^{2}$ $f(-3) = 2 - 18(-3) - 3(-3)^{2} = \boxed{29} \leftarrow \text{maximum value}$ Vertex of parabola (-3, 29) Parabola opens <i>down</i> so maximum value is 29	

What is the maximum value of the function $f(x) = 4 + 8x - x^2$

f'(x) = -2x + 8 = 0 8 = 2xCritical number $\rightarrow 4 = x$ f''(x) = -2 (negative) $\therefore \text{ concave down}$

 $f(x) = 4 + 8x - x^{2}$ $f(4) = 4 + 8(4) - (4)^{2} = 20 \leftarrow \text{maximum value}$ Vertex of parabola (4, 20) Parabola opens *down* so maximum value is 20 Find the slope of the line tangent to the graph of $f(x) = x^2 + 3$ at the point where x = -1

 $f(x) = x^{2} + 3$ f'(x) = 2xf'(-1) = 2(-1) = -2

49. Answer is A.

Difficulty = 0.71 U

Find the slope of the tangent to $y = x^3 - 2x^2 + 6$ at (2, 6) $y'(x) = 3x^2 - 4x$ $y'(2) = 3(2)^2 - 4(2) = 12 - 8 = 4$

50. Answer is C.

Difficulty = 0.71 U

Find the slope of the line tangent to the graph of $y = x^3 - 4x^2 + 2$ at the point where x = 2

$$y'(x) = 3x^2 - 8x$$

 $y'(2) = 3(2)^2 - 8(2) = 12 - 16 = -4$

51. Answer is C.

Difficulty = 0.70 H

If
$$y = -3x + 1$$
 is tangent to the curve $f(x)$ at $x = a$ which must be true?

 $\underbrace{y = -3x + 1}_{slope=-3} \text{ is } \underbrace{tangent}_{then \ derivative \ of \ f(x) \ at \ x=a \ must \ be \ f'(a)=-3}$

52. Answer is B.

Difficulty = 0.69 U

Given the function $f(x) = 3x^2 - 4x + 3$ for what value(s) of x is the slope of the tangent line equal to 2

 $f'(x) = 6x - 4 = 2 \quad \leftarrow \text{slope}$ 6x = 6 $\boxed{x = 1}$

Determine the slope of the line tangent to $y = \frac{6}{x}$ at (2, 3)

$$y(x) = \frac{6}{x} = 6x^{-1}$$

$$y'(x) = 6(-1x^{-2}) = -\frac{6}{x^2}$$

$$y'(2) = -\frac{6}{(2)^2} = -\frac{6}{4} = \boxed{-\frac{3}{2}}$$

54. Answer is A.

Find the *point* on $y = 2x^2 + 6x - 1$ where the slope of the tangent line is 2 $y'(x) = 4x + 6 = 2 \leftarrow slope$ 4x = 2 - 6x = -1When x = -1 $y(x) = 2x^2 + 6x - 1$ $= 2(-1)^2 + 6(-1) - 1 = -5$ \therefore at point (-1, -5)slope of the tangent line = 2

Difficulty = 0.61 U

Determine the slope of the line tangent to the graph of $y = \frac{1}{x}$ at x = 4 $y(x) = \frac{1}{x} = x^{-1}$

$$y(x) = \frac{1}{x} = x^{-1}$$
$$y'(x) = -1x^{-2} = -\frac{1}{x^{2}}$$
$$y'(4) = -\frac{1}{(4)^{2}} = \boxed{-\frac{1}{16}}$$

Difficulty = 0.59 U

Find an *equation* of the line tangent to the graph of $y = x^3 - 3x^2 + 3x + 2$ at (0, 2)

 $y(x) = x^3 - 3x^2 + 3x + 2$ At point (0, 2) slope m = 3 $y'(x) = 3x^2 - 6x + 3$ so tangent line is y = 3x + 2 $y'(0) = 3(0)^2 - 6(0) + 3 = 3$

57. Answer is B.

Difficulty = 0.54 H

At what *point* on the curve $y = x^2 - 4$ is the tangent *parallel* to the line 6x + y = 4

		When $x = -3$
Line $6x + y = 4$	$y(x) = x^2 - 4$	$y(x) = x^2 - 4$
y = -6x + 4	$y'(x) = 2x = -6 \leftarrow m$	$y(-3) = (-3)^2 - 4 = 5$
<i>slope</i> of line $m = -6 \rightarrow$	2x = -6	At point $(-3, 5)$ tangent line is
	$x = -3 \rightarrow$	
		<i>parallel</i> to the line $6x + y = 4$

58. Answer is A.

Difficulty = 0.53 U

Determine the slope of the line tangent to the graph of $f(x) = \sqrt{x}$ at x = 9

$$f(x) = \sqrt{x} = x^{\frac{1}{2}}$$
$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$$
$$f'(9) = \frac{1}{2\sqrt{9}} = \boxed{\frac{1}{6}}$$

59. Answer is B.

Difficulty = 0.41 H

The line
$$\underbrace{y = -4x + 18}_{slope = -4}$$
 is tangent to the parabola $y = ax^2 + bx$ at the point where $\underbrace{x = 3}_{y'(3) = -4}$
If the parabola has a critical point at $\underbrace{x = 2}_{y'(2)=0}$ determine the value of a
Point of tangency (3, 6)
 $y(x) = ax^2 + bx$
 $y'(x) = 2ax + b$
 $y'(3) = 2a(3) + b = -4$
 $6a + b = -4$
 $y'(2) = 2a(2) + b = 0$
 $4a + b = 0$
Solve system
 $6a + b = -4$
 $4a + b = 0$
 $\therefore 2a = -4$
 $a = -2$

What are the coordinates of the point on the graph of $y = \sqrt{x}$ where the slope of the tangent is $\frac{1}{8}$

$$y(x) = \sqrt{x} = x^{\frac{1}{2}}$$

$$y'(x) = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}} = \frac{1}{8}$$

$$2\sqrt{x} = 8$$

$$\sqrt{x} = 4$$

$$x = 16$$
When $x = 16$

$$y(x) = \sqrt{x}$$

$$y(16) = \sqrt{16} = 4 \Rightarrow (16, 4)$$
At point (16, 4) on the graph of $y = \sqrt{x}$
the slope of the tangent is $\frac{1}{8}$

61. Answer is C.

Determine the slope of the line tangent to the graph of $y = x^3 - x^2$ at the point where x = 2

$$y'(x) = 3x^2 - 2x$$

 $y'(2) = 3(2)^2 - 2(2) = 8$

62. Answer is C.

Determine the slope of the tangent line to
$$f(x) = -\frac{2}{x}$$
 at the point where $x = 2$

$$f(x) = -\frac{2}{x} = -2x^{-1}$$

$$f'(x) = -2(-1x^{-2}) = \frac{2}{x^{2}}$$

$$f'(2) = \frac{2}{(2)^{2}} = \frac{2}{4} = \boxed{\frac{1}{2}}$$

63. Answer is C.

What is the slope of the tangent line to the graph of $y = -x^2 + 2x - 3$ at the point (2,-3)

$$y'(x) = -2x + 2$$

 $y'(2) = -2(2) + 2 = -2$

64. Answer is A.

What is the slope of the tangent line to the function y = 3 - x

$$y(x) = 3 - x$$
$$y'(x) = \boxed{-1}$$

The original function is a *straight line* with slope -1

The equation of the normal line to the curve $y = x^4 + 3x^3 + 2$ at the point where x = 0 is

Point of tangency/normal	Slope of tangent at $x = 0$
$y = x^4 + 3x^3 + 2$	$y = x^4 + 3x^3 + 2$
y(0)=2	$y' = 4x^3 + 9x^2$
(0,2)	$y'(0) = 4x^3 + 9x^2 = 0 \leftarrow horizontal \text{ tangent at } x = 0$
	Slope of normal is <i>undefined</i> at $x = 0 \leftarrow$ Vertical <i>line</i> $x = 0$

66. Answer is C.

The line L is perpendicular to the parabola $y = kx^2$ at the point (1, 5) What is the equation of L

$y = kx^{2}$ $5 = k(1)^{2}$ 5 = k	$y = 5x^{2}$ y' = 10x y'(1) = 10(1) = 10 Slope of <i>tangent</i> at the point (1, 5) is 10	Slope of <i>normal</i> is $-\frac{1}{10}$ Equation of normal Slope $=\frac{rise}{run} = \frac{-1}{10} = \frac{y-5}{x-1}$ 10y-50 = -x+1 x+10y = 51
---	---	---

67. Answer is A.

If x + 7y = 29 is an equation of the line *normal* to the graph of f at the point (1, 4), then $f'(1) = y = -\frac{1}{7}x + \frac{29}{7}$ Slope of normal $= -\frac{1}{7}$ at the point (1, 4) Slope of tangent = 7 at the point (1, 4)

68. Answer is B.

The line perpendicular to the tangent of the curve represented by the equation $y = x^2 + 6x + 4$ at the point (-2,-4) also intersects the curve at x =

$y = x^{2} + 6x + 4$ y' = 2x + 6 y'(-2) = 2(-2) + 6 = 2 → tangent $m = 2$ at point (-2, -4) → normal $m = -\frac{1}{2}$ at point (-2, -4)	Equation of normal $m = \frac{-1}{2} = \frac{y+4}{x+2}$ $2y+8 = -x-2$ $2y = -x-10$ $y = -\frac{1}{2}x-5$	Normal curve intersection $-\frac{1}{2}x-5=x^2+6x+4$ $0=x^2+6.5x+9$ $0=2x^2+13x+18$ 0=(2x+9)(x+2) $x=-\frac{9}{2}$ $x=-2$
---	---	--

An equation of the line *normal* to the graph of $y = x^4 - 3x^2 + 1$ at the point where x = 1 is

$y'(1) = 4(1)^3 - 6(1) = -2$ Slope of <i>tangent</i> to \rightarrow	$y = x^{4} - 3x^{2} + 1$ y(1) = (1) ⁴ - 3(1) ² + 1 = -1 Point of tangency (1,-1) Slope of <i>normal</i> is $m = \frac{1}{2}$	Equation of <i>normal</i> at (1,-1) Slope = $\frac{\text{rise}}{\text{run}} = \frac{1}{2} = \frac{y+1}{x-1}$ 2y+2 = x-1 -x+2y+3 = 0 x-2y-3 = 0
--	---	--

70. Answer is A.

An equation of the line normal to the graph of $y = 7x^4 + 2x^3 + x^2 + 2x + 5$ at the point where x = 0 is

 $y = 7x^{4} + 2x^{3} + x^{2} + 2x + 5$ $y' = 28x^{3} + 6x^{2} + 2x + 2$ y'(0) = 2Slope of tangent $m = \frac{2}{1}$ Slope of normal $m = -\frac{1}{2}$ Point/slope (0, 5) $m = -\frac{1}{2}$ Equation of normal Slope $= \frac{rise}{run} = \frac{-1}{2} = \frac{y-5}{x-0}$ 2y-10 = -xx+2y=10

71. Answer is B.

Find the equation of the line *normal* to $y = 4x^2 + 2x + 9$ at the point where x = 1 $y = 4x^2 + 2x + 9$ $y = 4x^2 + 2x + 9$ $Slope = \frac{-1}{10} = \frac{y - 15}{x - 1}$ y' = 8x + 2 $y = 4x^2 + 2x + 9$ $Slope = \frac{-1}{10} = \frac{y - 15}{x - 1}$ y'(1) = 8(1) + 2 = 10 $y(1) = 4(1)^2 + 2(1) + 9 = 15$ loy - 150 = -x + 1at x = 1tangent m = 10Normal at point (1, 15) $m = -\frac{1}{10}$ x + 10y = 151

72. Answer is C.

The coordinates of the point where the normal to the curve $y = \frac{1}{3}x^3 + \frac{1}{2}x^2 + x$ at x = 1intersects the y-axis are

 $y = \frac{1}{3}x^{3} + \frac{1}{2}x^{2} + x$ $y' = x^{2} + x + 1$ $y'(1) = (1)^{2} + (1) + 1 = 3$ Slope of tangent $m = \frac{3}{1}$ Slope of normal $m = -\frac{1}{3}$ Point/slope $(1, \frac{11}{6})$ $m = -\frac{1}{3}$ Equation of normal Slope $= \frac{rise}{run} = \frac{-1}{3} = \frac{y - \frac{11}{6}}{x - 1}$ Slope $= \frac{rise}{run} = \frac{-1}{3} = \frac{y - \frac{11}{6}}{x - 1}$ Slope $= \frac{rise}{run} = -\frac{1}{3} = \frac{y - \frac{11}{6}}{x - 1}$ Slope $= \frac{rise}{run} = -\frac{1}{3} = -x + 1$ Slope $= \frac{1}{3} = -x + 1$ Slope $= \frac{1}{3} = -x + 1$ Slope $= \frac{1}{3} = -6x + 6$ 6x + 18y - 39 = 0Point $(0, \frac{13}{6})$

The line normal to the curve $y = x^2$ at (2, 4) intersects the curve at x =

$y = x^{2}$ y' = 2x y'(2) = 2(2) = 4 Slope of tangent $m = \frac{4}{1}$ Slope of normal $m = -\frac{1}{4}$	Point/slope (2, 4) $m = -\frac{1}{4}$ Equation of normal Slope $= \frac{rise}{run} = \frac{-1}{4} = \frac{y-4}{x-2}$ 4y-16 = -x+2 $y = -\frac{1}{4}x + \frac{9}{2}$	Normal intersects the curve $x^{2} = y \qquad y = -\frac{1}{4}x + \frac{9}{2}$ $x^{2} = -\frac{1}{4}x + \frac{9}{2}$ $4x^{2} = -x + 18$ $4x^{2} + x - 18 = 0$ $(4x + 9)(x - 2) = 0$ $\boxed{x = -\frac{9}{4}} \qquad x = 2$
--	---	--

74. Find the value of x at which the normal to the curve $y = x^2 + 1$ at x = 3 intersects the curve again.

$y = x^{2} + 1$ y' = 2x y'(3) = 2(3) = 6 Slope of tangent $m = \frac{6}{1}$ Slope of normal $m = -\frac{1}{6}$	Point/slope (3, 10) $m = -\frac{1}{6}$ Equation of normal Slope $= \frac{rise}{run} = \frac{-1}{6} = \frac{y-10}{x-3}$ 6y-60 = -x+3 $y = -\frac{1}{6}x + \frac{63}{6}$	Intersects the curve again $1 + x^2 = y$ $y = -\frac{1}{6}x + \frac{63}{6}$ $1 + x^2 = -\frac{1}{6}x + \frac{63}{6}$ $6 + 6x^2 = -x + 63$ $6x^2 + x - 57 = 0$ (6x + 19)(x - 3) = 0 $\boxed{x = -\frac{19}{6}}$ $x = 3$
--	--	--

75. The line normal to the function $f(x) = 4 - x^2$ at x = -1 intersects the curve again. Find the value of the function at that point.

 $\begin{aligned} f(x) &= 4 - x^2 \\ f'(x) &= -2x \\ f'(-1) &= -2(-1) &= 2 \\ \text{Slope of tangent } m &= \frac{2}{1} \\ \text{Slope of normal } m &= -\frac{1}{2} \end{aligned} \qquad \begin{aligned} \text{Point/slope } (-1, 3) \quad m &= -\frac{1}{2} \\ \text{Equation of normal} \\ \text{Slope } = \frac{rise}{run} &= \frac{-1}{2} &= \frac{y-3}{x+1} \\ 2y-6 &= -x-1 \\ y &= -\frac{1}{2}x + \frac{5}{2} \\ 0 &= 2x^2 - x + 5 \\ 0 &= 2x^2 - x - 3 \\ 0 &= (2x-3)(x+1) \\ \leftarrow \overline{x = \frac{3}{2}} \quad x &= -1 \end{aligned}$

x	-4	-3	-2	-1	0	1	2	3	4
g'(x)	2	3	0	-3	-2	-1	0	3	2

The derivative g' of a function g is continuous and has exactly two zeros. Selected values of g' are given in the table. If the domain of g is the set of all real numbers, then g is decreasing on which of the following intervals ?

g(x) is *decreasing* whenever

$$g'(x) < 0 \quad \rightarrow \quad -2 < g < 2$$

77. Answer is E.

- I. f'(b) = 0 \square True, minimum point, horizontal tangent
- II. f''(a) < 0 \square True, concave downwards
- III. f''(c) < 0 \square True, concave downwards
- IV. f''(b) > 0 \square True, concave upwards

78. Answer is B.

If y is a function of x such that $y' > 0$ for all					
x and $y'' < 0$ for all x , which of the following					
could be part of the graph of $f(x)$					

- $y' > 0 \rightarrow f(x)$ increasing
- $y'' < 0 \rightarrow f(x)$ concave *downwards*
- $\therefore f(x) \rightarrow increasing$ and concave downwards

Use the graph on the right for this and the <u>next two</u> questions. At which labelled point do both $\frac{dy}{dx} \text{ and } \frac{d^2 y}{dx^2} \text{ equal zero ?}$ $\frac{dy}{dx} = \mathbf{0} \rightarrow \text{horizontal tangent}$ $\frac{d^2 y}{dx^2} = \mathbf{0} \rightarrow \text{possible change concavity}$ Point **R** \rightarrow inflection point fits

80. Answer is D.

81. Answer is E.

83. Answer is B.

84. Answer is D.

85. Answer is B

At which of the five points on the graph in the figure at the right are $\frac{dy}{dx}$ and $\frac{d^2 y}{dx^2}$ both negative ? $\frac{dy}{dx}$ negative \rightarrow function is *decreasing* $\frac{d^2 y}{dx^2}$ negative \rightarrow function is *concave down* Point $B \rightarrow$ function is *decreasing/concave down*

86. Answer is A.

The graph of the derivative of a twice differentiable function f is shown in the graph. If f(1) = -2 which of the following is true ?

New twist \rightarrow be careful !!! f''(2) > 0 (positive) \leftarrow concave up f'(2) = 0 (zero) \leftarrow minimum point f(1) = -2 and f value is decreasing between 1 < x < 2 until minimum point f(2) < -2 (negative) f(2) < f'(2) < f''(2)

87. Answer is E.

At which point on the graph of y = g(x)on the right is g'(x) = 0 and g''(x) < 0

 $g'(x) = 0 \quad \leftarrow \text{horizontal tangent}$

 $g''(x) < 0 \quad \leftarrow \text{ concave down}$

Point **E** is the only point

91. Answer is D.

The graph of g, a twice-differentiable function is shown in the diagram. Choose the correct order for the values of g(1), g'(1) and g''(1)

 \rightarrow *x*-intercept g(1) = 0 $g''(1) = negative \rightarrow$ function decreasing $g''(1) = positive \rightarrow function concave up$...

92.	Derivatives of	$y = e^{u}$	and	$y = \ln u$	
		$y' = e^u \frac{du}{dx}$		$y' = \frac{1}{u}\frac{du}{dx} = \frac{u'}{u}$	

If
$$f(x) = \ln x^3$$
 then $f''(3) =$
 $f(x) = 3 \ln x$
 $f'(x) = \frac{3}{x} = 3x^{-1}$
 $f''(x) = 3(-1x^{-2}) = \frac{-3}{x^2}$
 $f''(3) = \frac{-3}{3^2} = \boxed{\frac{-1}{3}}$

94. Answer is D.

If $y = e^x(x-1)$ then y''(0) = $y' = e^x(1) + (x-1)e^x \quad \leftarrow \text{ product rule}$ $y' = e^x(1+x-1)e^x = xe^x$ $y'' = xe^x + e^x(1) = e^x(x+1) \quad \leftarrow \text{ product rule second time}$ $y''(0) = e^0(0+1) = \boxed{1}$

95. Answer is E.

The domain of the function defined by $f(x) = \ln(x^2 - x - 6)$ is the set of all real numbers x such that

$$f(x) = \ln(x^2 - x - 6)$$

$$(x+2)(x-3) > 0$$

$$\overline{x = -2 \quad x = 3} \quad \leftarrow \text{ endpoints}$$

$$\boxed{-2 < x \text{ or } x > 3}$$

Sketch parabola, to get intervals

96. Answer is D.

Find y' given
$$y = \ln(x\sqrt{x^2 + 1})$$

 $y = \ln x + \ln(x^2 + 1)^{\frac{1}{2}} \leftarrow \log \text{ rules}$
 $y = \ln x + \frac{1}{2}\ln(x^2 + 1)$
 $y' = \frac{1}{x} + \frac{2'x}{2'(x^2 + 1)} = \frac{1}{x}\left(\frac{x^2 + 1}{x^2 + 1}\right) + \frac{x}{(x^2 + 1)}\left(\frac{x}{x}\right) = \boxed{\frac{2x^2 + 1}{x(x^2 + 1)}}$

$$\log_{\frac{1}{b}} x =$$

$$\log_{\frac{1}{b}} \frac{x}{1} = \log_{\frac{b}{1}} \frac{1}{x} = \log_{b} x^{-1} = \boxed{-\log_{b} x} \quad \leftarrow \text{ log shortcuts}$$

98. Answer is A.

If
$$f(x) = 2e^{x} + e^{2x}$$
 then $f'''(0) =$
 $f'(x) = 2e^{x} + e^{2x}(2)$
 $f''(x) = 2e^{x} + 2e^{2x}(2)$
 $f'''(x) = 2e^{x} + 4e^{2x}(2) = 2e^{x} + 8e^{2x}$
 $f'''(0) = 2e^{0} + 8e^{2(0)} = 10$

99. Answer is B.

If
$$e^{g(x)} = 2x+1$$
 then $g'(x) =$
 $g(x) = \ln(2x+1) \leftarrow \ln \text{ both sides}$
 $g'(x) = \boxed{\frac{2}{2x+1}}$

100. Answer is B.

If
$$f(x) = (x+1)^{\frac{3}{2}} - e^{x^2 - 9}$$
 then $f'(3) =$
 $f'(x) = \frac{3}{2}(x+1)^{\frac{1}{2}} - e^{x^2 - 9}(2x) = \frac{3}{2}\sqrt{x+1} - 2xe^{x^2 - 9}$
 $f'(3) = \frac{3}{2}\sqrt{3+1} - 2(3)e^{3^2 - 9} = 3 - 6 = \boxed{-3}$

101. Answer is A.

Simplify:
$$\ln 2 + \ln 5 - \ln 8 - \ln 15 =$$

 $\ln(2)(5) - \ln 8 - \ln 15 = \ln \frac{10}{8} - \ln 15 = \ln \frac{10}{8(15)} = \ln \frac{1}{12} = \ln 12^{-1} = \boxed{-\ln 12}$

102. Let
$$f(x) = \ln(x^2 - x - 6)$$

a) the domain of $f(x)$ is
b) find $f(5)$
c) find $f'(-3)$

$$f(x) = \ln(x^2 - x - 6)$$

 $(x+2)(x-3) > 0$
 $\overline{x = -2} | x = 3$
a) the domain of $f(x)$ is $\overline{x < -2 \text{ or } x > 3}$
b) find $f(5) = \ln(5^2 - 5 - 6) = \boxed{\ln 14}$
c) find $f'(x) = \frac{2x - 1}{x^2 - x - 6}$
 $f'(-3) = \frac{2(-3) - 1}{(-3)^2 - (-3) - 6} = \boxed{\frac{-7}{6}}$

If
$$y = f(x) = x^3 + \ln x$$
 then $y' =$
$$f'(x) = \boxed{3x^2 + \frac{1}{x}}$$

104. Answer is D.

Solve: $\log_9 x^2 = 9$ $x^2 = 9^9 \leftarrow \text{exponentiate both sides base } 9$ $(x^2)^{\frac{1}{2}} = (9^9)^{\frac{1}{2}} \leftarrow \text{exchange exponent order to square root first}$ $x = (9^{\frac{1}{2}})^9 = (\sqrt{9})^9 = (\pm 3)^9 = \pm 3^9$

105. Answer is C.

If
$$f(x) = x \ln x$$
 then $f'''(e) =$

$$f'(x) = x \left(\frac{1}{x}\right) + \ln x(1) = 1 + \ln x \quad \leftarrow \text{ product rule}$$

$$f''(x) = 0 + \frac{1}{x} = x^{-1}$$

$$f'''(x) = -1x^{-2} = \frac{-1}{x^2}$$

$$f'''(e) = \boxed{-\frac{1}{e^2}}$$

If
$$e^{g(x)} = \frac{x^x}{x^2 - 1}$$
 then $g(x) =$
 $g(x) = \ln \frac{x^x}{x^2 - 1} \leftarrow \ln \text{ both sides}$
 $g(x) = \ln x^x - \ln(x^2 - 1) = \boxed{x \ln x - \ln(x^2 - 1)}$

Difficulty = 0.64

108. Answer is C.

Difficulty = 0.88

If
$$y = x^2 e^x$$
 then $\frac{dy}{dx} =$
 $y' = x^2 e^x + e^x (2x) = \boxed{x e^x (x+2)} \leftarrow \text{product rule}$

109. Answer is E.

If
$$y = \ln[(x+1)(x+2)]$$
, then $\frac{dy}{dx} =$

$$y = \ln(x+1) + \ln(x+2) \leftarrow \log \text{ rules}$$

$$\frac{dy}{dx} = \frac{1}{x+1} + \frac{1}{x+2}$$

110. Answer is E.

Solve: $2x = 7^{1+\log_7 4}$ $2x = (7^1)(-7^{-\log_7 4})$ 2x = (7)(4) 2x = 28x = 14

What is x when $6 = e^{5x}$ $\ln 6 = \frac{\ln e^{5x}}{\ln 6} \leftarrow \ln \text{ both sides}$ $\frac{\ln 6}{5} = \frac{5x}{5}$ $\frac{\ln 6}{5} = x$

112. Answer is B.

$$\ln_{e} 10 =$$

$$\ln_{e} 10 = \boxed{\frac{1}{\ln_{10} e}} \quad \leftarrow \text{ log shortcut}$$

113. Answer is B.

The tangent to the curve of $y = xe^{-x}$ is horizontal when x is equal to $y' = x(-e^{-x}) + e^{-x}(1) \leftarrow \text{product rule}$ $y' = -xe^{-x} + e^{-x} = e^{-x}(1-x) = 0 \leftarrow \text{looking for critical numbers}$ $\overline{e^{-x} \neq 0 \mid x = 1}$ Critical number x = 1 with horizontal tangent

114. Answer is C.

Find
$$\frac{dy}{dx}$$
 for $y = \ln \sqrt{x^2 + 4}$
 $y = \ln(x^2 + 4)^{\frac{1}{2}} = \frac{1}{2}\ln(x^2 + 4)$
 $y' = \frac{1}{2}\left(\frac{2x}{x^2 + 4}\right) = \boxed{\frac{x}{x^2 + 4}}$

115. Answer is D.

Find an equation for the tangent line to the graph of $f(x) = \ln(x^2 - 1)$ at the point where x = 2

Slope of tangentPoint of tangencyEquation of tangent at (2, ln 3) $f(x) = \ln(x^2 - 1)$ $f(x) = \ln(x^2 - 1)$ $f(x) = \ln(x^2 - 1)$ $f(2) = \ln(2^2 - 1) = \ln 3$ $f'(x) = \frac{2x}{x^2 - 1}$ $point \rightarrow (2, \ln 3)$ $4x - 8 = 3y - 3\ln 3$ $f'(2) = \frac{2(2)}{2^2 - 1} = \frac{4}{3}$ $4x - 3y = 8 - \ln 3^3$

If
$$f(x) = e^{-2x}$$
, then $f^{(4)}(x) =$
 $f'(x) = -2e^{-2x}$
 $f''(x) = 4e^{-2x}$
 $f'''(x) = -8e^{-2x}$
 $f^{(4)}(x) = 16e^{-2x}$

117. Answer is E.

If
$$\log_b(3^b) = \frac{b}{2}$$
, then $b =$
 $\log_b 3^b = \frac{b}{2}$
 $b \log_b 3 = \frac{b}{2}$
 $\frac{b \log_b 3}{b} = \frac{b}{2b}$
 $\log_b 3 = \frac{1}{2}$
 $\log_b 3 = \frac{1}{2}$

118. Answer is E.

Find
$$\frac{dy}{dx}$$
 if $y = x \ln^3 x$
 $y = x \ln^3 x = x(\ln x)^3$ \leftarrow rearrange exponent, means the same
 $y' = \chi(3)(\ln x)^2 \frac{1}{\chi} + (\ln x)^3(1)$ \leftarrow product rule
 $y' = 3(\ln x)^2 + (\ln x)^3$
 $y' = \ln^2 x(3 + \ln x)$

119. Answer is E.

If
$$y = \frac{e^{\ln u}}{u}$$
, then $\frac{dy}{du} =$
 $y = \frac{e^{-\frac{\ln u}{u}}}{u} = \frac{u}{u} = 1 \quad \leftarrow \text{ In shortcut}$
 $y' = \boxed{0}$

What is the slope of the tangent line to the curve $y = \ln \frac{x^2}{\sqrt{x^2 + 1}}$ at the point where x = 2

$$y = \ln \frac{x^2}{\sqrt{x^2 + 1}} = \ln x^2 - \ln \sqrt{x^2 + 1} = 2\ln x - \frac{1}{2}\ln(x^2 + 1)$$
$$y' = \frac{2}{x} - \frac{1}{2'} \left(\frac{2'x}{x^2 + 1}\right) = \frac{2}{x} - \left(\frac{x}{x^2 + 1}\right)$$
$$y'(2) = \frac{2}{2} - \left(\frac{2}{2^2 + 1}\right) = 1 - \frac{2}{5} = \boxed{\frac{3}{5}}$$

121. Answer is E.

What is the slope of the tangent line to the curve $y = \ln(x^2 + 1)$ when x = 3

$$y' = \frac{2x}{x^2 + 1}$$
$$y'(3) = \frac{2(3)}{3^2 + 1} = \frac{6}{10} = \boxed{\frac{3}{5}}$$

122. Answer is B.

The derivative of
$$f(x) = \ln(x^2 + 2x + 1)$$
 is

$$f'(x) = \frac{2x+2}{x^2+2x+1} = \frac{2(x+1)}{(x+1)(x+1)} = \boxed{\frac{2}{x+1}}$$

123. Answer is A.

Difficulty = 0.44

If
$$f(x) = \ln(x+4+e^{-3x})$$
 then $f'(0) =$
 $f'(x) = \frac{1-3e^{-3x}}{x+4+e^{-3x}}$
 $f'(0) = \frac{1-3e^0}{0+4+e^0} = \frac{1-3}{0+4+1} = \boxed{-\frac{2}{5}}$

124. Answer is E.

If
$$6y = 3e^{2x}$$
 then $y' =$
 $y = \frac{1}{2}e^{2x}$
 $y' = \frac{1}{2}e^{2x}(2) = e^{2x}$

If
$$f(x) = x^2 \ln x^3$$
 then $f'(x) =$
 $f'(x) = x^2 \left(\frac{3x^2}{x^3}\right) + \ln x^3(2x) \quad \leftarrow \text{ product rule}$
 $f'(x) = 3x + 6x \ln x = 3x(1 + 2\ln x) = \boxed{3x(1 + \ln x^2)}$

126. Answer is D.

If
$$y = e^{\frac{1}{2}\ln(x^2 - 4x + 7)}$$
 then $\frac{dy}{dx} =$
 $y = e^{\frac{4\pi}{x^2 - 4x + 7}^{\frac{1}{2}}} \leftarrow \text{simplify logs}$
 $y' = \frac{1}{2}(x^2 - 4x + 7)^{-\frac{1}{2}} 2(x - 2) = \boxed{\frac{x - 2}{\sqrt{x^2 - 4x + 7}}}$

127. Answer is A.

Given the equation $y = 3e^{-2x}$ what is an equation of the normal line to the graph at $x = \ln 2$

$$y = 3e^{-2x}$$

$$y' = 3(e^{-2x})(-2) = -6e^{-2x}$$

$$y'(\ln 2) = -6e^{-2\ln 2} = -6e^{-\frac{1}{2}x^{-2}} = -6(\frac{1}{4}) = -\frac{3}{2}$$

Slope of tangent $= -\frac{3}{2}$
Slope of normal $= \frac{2}{3}$

$$y(\ln 2) = 3e^{-2\ln 2} = 3e^{-\frac{1}{2}\pi 2^{-2}} = 3(\frac{1}{4}) = \frac{3}{4}$$

Point on curve $(\ln 2, \frac{3}{4})$
Slope $= \frac{rise}{run} = \frac{2}{3} = \frac{y - \frac{3}{4}}{x - \ln 2}$
Slope $= \frac{rise}{run} = \frac{2}{3} = \frac{y - \frac{3}{4}}{x - \ln 2}$
Slope $= \frac{rise}{run} = \frac{2}{3} = \frac{y - \frac{3}{4}}{x - \ln 2}$
Slope $= \frac{rise}{run} = \frac{2}{3} = \frac{y - \frac{3}{4}}{x - \ln 2}$
Slope $= \frac{rise}{run} = \frac{2}{3} = \frac{y - \frac{3}{4}}{x - \ln 2}$
Slope $= \frac{rise}{run} = \frac{2}{3} = \frac{y - \frac{3}{4}}{x - \ln 2}$
Slope $= \frac{rise}{run} = \frac{2}{3} = \frac{y - \frac{3}{4}}{x - \ln 2}$
Slope $= \frac{rise}{run} = \frac{2}{3} = \frac{y - \frac{3}{4}}{x - \ln 2}$
Slope $= \frac{rise}{run} = \frac{2}{3} = \frac{y - \frac{3}{4}}{x - \ln 2}$
Slope $= \frac{rise}{run} = \frac{2}{3} = \frac{y - \frac{3}{4}}{x - \ln 2}$
Slope $= \frac{rise}{run} = \frac{2}{3} = \frac{y - \frac{3}{4}}{x - \ln 2}$
Slope $= \frac{rise}{run} = \frac{2}{3} = \frac{y - \frac{3}{4}}{x - \ln 2}$
Slope $= \frac{rise}{run} = \frac{2}{3} = \frac{y - \frac{3}{4}}{x - \ln 2}$
Slope $= \frac{rise}{run} = \frac{2}{3} = \frac{y - \frac{3}{4}}{x - \ln 2}$
Slope $= \frac{rise}{run} = \frac{2}{3} = \frac{y - \frac{3}{4}}{x - \ln 2}$
Slope $= \frac{rise}{run} = \frac{2}{3} = \frac{y - \frac{3}{4}}{x - \ln 2}$
Slope $= \frac{rise}{run} = \frac{2}{3} = \frac{y - \frac{3}{4}}{x - \ln 2}$
Slope $= \frac{rise}{run} = \frac{2}{3} = \frac{y - \frac{3}{4}}{x - \ln 2}$
Slope $= \frac{rise}{run} = \frac{2}{3} = \frac{rise}{x - \ln 2}$
Slope $= \frac{rise}{run} = \frac$

128. Answer is B.

The equation of the normal line to the graph of $y = e^{2x}$ at the point where $\frac{dy}{dt} = 2$ is dx $v = e^{2x}$ Point on curve (0, 1) $y' = 2e^{2x} = 2 \quad \leftarrow \text{given}$ Slope = $\frac{rise}{run} = \frac{-1}{2} = \frac{y-1}{x-0}$ $e^{2x} = 1$ $2x = \ln 1 = 0$ 2y - 2 = -xx = 02y = -x + 2 $y(0) = e^{2(0)} = 1 \leftarrow \text{point}(0, 1)$ 1 Slope of tangent = $2 \leftarrow given$ -x+1v = -Slope of normal = $-\frac{1}{2}$

Find $\frac{dy}{dx}$ for $y = \ln(5-x)^6$ $y = 6\ln(5-x) \leftarrow \log \text{ shortcut}$ $y' = \frac{6(-1)}{5-x} = \boxed{\frac{6}{x-5}}$

130. Answer is B.

The slope of the line tangent to the graph of $y = \ln(x^2)$ at $x = e^2$ is

131. Answer is D.

If
$$\log_a 2^a = \frac{a}{4}$$
 then $a =$
 $a \log_a 2 = \frac{a}{4} \quad \leftarrow \log \text{ rule}$
 $\log_a 2 = \frac{1}{4} \quad \leftarrow \text{ divide both sides by } a$
 $2 = a^{\frac{1}{4}} \quad \leftarrow \text{ exponentiate both sides base } a \text{ then } 4^{th} \text{ power both sides}$
 $16 = a$

132. Answer is B.

The slope of the line tangent to the graph of
$$y = \ln\left(\frac{x}{2}\right)$$
 at $x = 4$ is
 $y = \ln x - \ln 2$
 $y' = \frac{1}{x} - 0$
 $y'(4) = \boxed{\frac{1}{4}}$

133. Answer is B.

If
$$f(x) = \log_b x$$
 and $g(x) = b^x$ then $f(g(x)) = f(g(x)) = \log_b(b^x) = \log_b b^x = x$ $\leftarrow \log rule$

Simplify:
$$\ln e^4 =$$

 $\ln e^4 = \frac{\ln e^4}{\ln e^4} = 4 \quad \leftarrow \log \text{ rule}$

135. Answer is A.

If
$$y = \ln(x^{x})$$
 then $y' =$
 $y = x \ln x \quad \leftarrow$ rearrange by log rule
 $y' = x(\frac{1}{x}) + (\ln x)(1) \quad \leftarrow$ product rule
 $y' = \boxed{1 + \ln x}$

136. Answer is E.

If
$$f(x) = x^2 \ln x$$
 then $f'(x) =$
 $f'(x) = x^2 \left(\frac{1}{x}\right) + \ln x(2x) \quad \leftarrow \text{ product rule}$
 $f'(x) = \boxed{x + 2x \ln x}$

137. Answer is A.

Simplify:
$$2 \ln e^{5x} =$$

 $2 \ln e^{5x} = 2 \frac{\ln e^{5x}}{\ln e^{5x}} = 2(5x) = 10x$

138. Answer is C.

If
$$f(x) = e^{2x}$$
 and $g(x) = \ln x$ then the derivative of $y = f(g(x))$ at $x = e$ is
 $y = f(g(x)) = e^{2g(x)} = e^{2\ln x} = e^{4\pi x^2} = x^2 \quad \leftarrow \text{ composite function and log rules}$
 $y = x^2$
 $y'(x) = 2x$
 $y'(e) = \boxed{2e}$

139. Answer is A.

If $f(x) = e^{2\ln x}$ then f'(3) = $f(x) = e^{2\ln x} = e^{-4\pi x^2} = x^2 \quad \leftarrow \text{ and log rules}$ $f(x) = x^2$ f'(x) = 2xf'(3) = 2(3) = 6

140. Answer is D.

If
$$y = e^{8x^2 + 1}$$
 then $\frac{dy}{dx} =$
 $y' = e^{8x^2 + 1}(16x) = 16xe^{8x^2 + 1}$

$$\frac{d}{dx}\ln\left(\frac{1}{1-x}\right) =$$

$$\frac{d}{dx}\ln\left(\frac{1}{1-x}\right) = \frac{d}{dx}\left[\ln 1 - \ln(1-x)\right] = \left[0 - \frac{-1}{(1-x)}\right] = \left[\frac{1}{1-x}\right]$$

If
$$f(x) = x \ln(x^2)$$
 then $f'(x) =$
 $f(x) = 2x \ln x \quad \leftarrow \text{ log rules}$
 $f'(x) = 2x \left(\frac{1}{x}\right) + \ln x(2) = 2 + 2\ln x = \boxed{2 + \ln(x^2)} \quad \leftarrow \text{ product rule}$

143. Answer is B.

$$\frac{d}{dx}(\ln e^{3x}) =$$

$$\frac{d}{dx}(\ln e^{3x}) = \frac{d}{dx}(3x) = \boxed{3}$$

144. Answer is C.

The slope of the line tangent to the graph of $y = \ln \sqrt{x}$ at $(e^2, 1)$ is $y = \ln \sqrt{x} = \ln x^{\frac{1}{2}} = \frac{1}{2} \ln x$ $y' = \frac{1}{2x}$ $y'(e^2, 1) = \boxed{\frac{1}{2e^2}}$

145. Answer is E.

Difficulty = 0.30

If
$$f(x) = e^{3\ln x^2}$$
 then $f'(x) =$
 $f(x) = e^{3\ln x^2} = e^{-4\pi (x^2)^3} = x^6$
 $f'(x) = 6x^5$

146. Answer is B.

If
$$f(x) = \ln(x^x)$$
 then $f'(e^2) =$

$$f(x) = x \ln x \quad \leftarrow \text{ log rules}$$

$$f'(x) = x \left(\frac{1}{x}\right) + \ln x(1) = 1 + \ln x \quad \leftarrow \text{ product rule}$$

$$f'(e^2) = 1 + \frac{\ln e^2}{1 + \ln e^2} = \boxed{3}$$

If
$$y = e^{nx}$$
 then $\frac{d^n y}{dx^n}$ (the n^{th} derivative of y with respect to x) is
 $y' = e^{nx}(n) = ne^{nx}$
 $y'' = ne^{nx}(n) = n^2 e^{nx}$
 $y''' = n^2 e^{nx}(n) = n^3 e^{nx}$ \leftarrow observe pattern
 $f^{(n)}(x) = \boxed{n^n e^{nx}}$

148. Answer is A.

The equation of the tangent to the curve $\ln y = 3x^2 + 6x$ at the point where x = 0 is

$$\ln y = 3x^{2} + 6x$$

$$y = e^{3x^{2} + 6x} \quad \leftarrow \text{ exponentiate both sides base } e$$

$$y' = e^{3x^{2} + 6x} (6x + 6) = (6x + 6)e^{3x^{2} + 6x}$$

$$y'(0) = (6(0) + 6)e^{3(0)^{2} + 6(0)} = 6$$

$$y(0) = e^{3(0)^{2} + 6(0)} = 1 \quad \leftarrow \text{ point } (0, 1)$$
Equation of the tangent through $(0, 1)$
Slope $= \frac{rise}{run} = \frac{6}{1} = \frac{y - 1}{x - 0}$

$$y - 1 = 6x$$

$$y = 6x + 1$$

149. Answer is C.

If
$$y = x(\ln x)^2$$
 then $\frac{dy}{dx} =$

$$y' = \frac{x}{1} \Big[2(\ln x)^1 (\frac{1}{x}) \Big] + (\ln x)^2 (1) \quad \leftarrow \text{ product rule}$$

$$y' = 2\ln x + (\ln x)^2 = \boxed{(\ln x)(2 + \ln x)}$$

150. Answer is A.

If
$$f(x) = 3x \ln x$$
 then $f'(x) =$
 $f'(x) = 3\left[x\left(\frac{1}{x}\right) + (\ln x)(1)\right] \leftarrow \text{product rule}$
 $f'(x) = 3[1 + \ln x] = 3 + 3\ln x = \boxed{3 + \ln(x^3)}$

151. Answer is B.

$$\frac{d}{dx}\ln\left(\frac{1}{x^2 - 1}\right) = \frac{d}{dx}\left[\ln 1 - \ln(x^2 - 1)\right] = 0 - \frac{2x}{(x^2 - 1)} = \frac{-2x}{x^2 - 1}$$

If
$$f(x) = \sqrt{e^{2x} + 1}$$
 then $f'(0) =$
 $f(x) = \sqrt{e^{2x} + 1} = (e^{2x} + 1)^{\frac{1}{2}} \leftarrow \text{rearrange}$
 $f'(x) = \frac{1}{2}(e^{2x} + 1)^{-\frac{1}{2}}(e^{2x})(2) \leftarrow \text{power rule and chain rule twice}$
 $f'(x) = \frac{e^{2x}}{\sqrt{e^{2x} + 1}}$
 $f'(0) = \frac{e^{2(0)}}{\sqrt{e^{2(0)} + 1}} = \frac{1}{\sqrt{2}}\left(\frac{\sqrt{2}}{\sqrt{2}}\right) = \boxed{\frac{\sqrt{2}}{2}}$

If
$$f(x) = e^x \ln x$$
 then $f'(e) =$

$$f'(x) = e^x \frac{1}{x} + (\ln x)(e^x) = \frac{e^x}{x} + e^x \ln x \quad \leftarrow \text{ product rule}$$

$$f'(e) = \frac{e^e}{e^1} + e^e \cdot \ln e^{-1} = \boxed{e^{e^{-1}} + e^e}$$

154. Answer is D.

If
$$y = \ln(3x+5)$$
 then $\frac{d^2 y}{dx^2} =$
 $y' = \frac{3}{3x+5} = 3(3x+5)^{-1}$
 $y'' = 3(-1)(3x+5)^{-2}(3) = \boxed{\frac{-9}{(3x+5)^2}}$

155. Answer is E.

The *slope* of the line *normal* to the curve $y = xe^x$ at x = -1 is $y(x) = xe^x$ $y'(x) = xe^x + e^x(1)$ \leftarrow product rule $y'(-1) = (-1)e^{(-1)} + e^{(-1)} = -\frac{1}{e} + \frac{1}{e} = \boxed{\frac{0}{1}} \leftarrow$ slope of tangent Slope of normal (negative reciprocal) = $\boxed{\frac{-1}{0}} \leftarrow$ undefined !!!

If
$$x = \frac{1}{2}$$
 when $x = \log_y x$ then $y =$

$$\frac{1}{2} = \frac{\log \frac{1}{2}}{\log y} \quad \leftarrow \text{ log rule}$$

$$\log y = 2 \log \frac{1}{2} \quad \leftarrow \text{ cross multiply}$$

$$\log y = \log(\frac{1}{2})^2$$

$$y = (\frac{1}{2})^2 = \boxed{\frac{1}{4}}$$

157. Answer is B.

If
$$f(x) = e^x$$
 and $g(x) = \frac{1}{x}$ then the *derivative* of $f(g(x))$, evaluated at $x = 2$ is

$$f(x) = e^x$$

$$f(g(x)) = e^{\frac{1}{x}}$$

$$\frac{d}{dx} f(g(x)) = e^{\frac{1}{x}}(-1x^{-2}) = \frac{-e^{\frac{1}{x}}}{x^2}$$

$$\frac{d}{dx} f(g(2)) = \frac{-e^{\frac{1}{2}}}{(2)^2} = \boxed{\frac{-\sqrt{e}}{4}}$$

158. Answer is A.

If the function
$$f(x) = \ln(x^2 - 1)$$
 then $\frac{f(7) - f(5)}{f'(7) - f'(5)} =$
$$\frac{f(x) = \ln(x^2 - 1)}{f'(x) = \frac{2x}{x^2 - 1}} \quad \left| \begin{array}{c} \frac{f(7) - f(5)}{f'(7) - f'(5)} = \frac{\ln 48 - \ln 24}{\frac{14}{48} - \frac{10}{24}} = \frac{\ln \frac{48}{24}}{\frac{-6}{48}} = \frac{\ln 2}{\frac{-1}{8}} = \boxed{-8\ln 2} \end{array} \right|$$

159. Answer is E.

If
$$f(x) = x^{e}e^{x}$$
 then $f'(x) =$
 $f'(x) = x^{e}e^{x} + e^{x}(ex^{e-1}) = x^{e}e^{x} + e^{x}ex^{e-1} = x^{e}e^{x} + x^{e-1}e^{x+1} \leftarrow \text{product rule}$
 $f'(x) = x^{e-1}e^{x}(x+e) = \boxed{\frac{x^{e}e^{x}(x+e)}{x}}$

160. Answer is E.

If
$$y = x - 1$$
 and $x > 1$ then $\frac{d^2(\ln y)}{dx^2} =$
 $\ln y = \ln(x - 1)$ \leftarrow In both sides
 $\frac{d(\ln y)}{dx} = \frac{1}{x - 1} = (x - 1)^{-1}$
 $\frac{d^2(\ln y)}{dx^2} = -1(x - 1)^{-2} = \boxed{\frac{-1}{(x - 1)^2}}$

161. Answer is C.

The slope of the line <i>normal</i> to the curve $y = xe^{x^3}$	at $x = 1$ is
$y'(x) = xe^{x^3} (3)$	$(5x^2) + e^{x^3}(1) \leftarrow \text{ product rule}$
slope of <i>tangent</i> \rightarrow $y'(1) = (1)e^{(1)^2}$	$e^{(3(1)^2)} + e^{(1)^3} = e(3) + e = 4e$
slope of <i>normal</i> \rightarrow negative reciprocal	$\frac{-1}{4e}$

162. Answer is A.

If
$$f(x) = 1 + \ln(x+2)$$
 then $f^{-1}(x) =$
 $y = 1 + \ln(x+2)$
 $x = 1 + \ln(y+2)$
 $(x-1) = \ln(y+2)$
 $e^{(x-1)} = y+2$
 $e^{x-1} - 2 = y$
 $f^{-1}(x) = e^{x-1} - 2$

163. Answer is A.

If
$$f(x) = x \ln \sqrt{x}$$
 what is $f'(x) =$

$$f(x) = x \ln \sqrt{x} = x \ln x^{\frac{1}{2}} = \frac{1}{2} x \ln x \quad \leftarrow \text{ In rules}$$

$$f'(x) = \frac{1}{2} \left[x \left(\frac{1}{x} \right) + \ln x(1) \right] = \frac{1}{2} \left[1 + \ln x \right] = \frac{1}{2} + \ln x^{\frac{1}{2}} = \boxed{\frac{1}{2} + \ln \sqrt{x}} \quad \leftarrow \text{ product rule}$$

164. Answer is A.

If
$$y = e^{4x^2}$$
 then $\frac{d(\ln y)}{dx} =$

$$\ln y = \ln e^{4x^2}$$

$$\ln y = 4x^2$$

$$\frac{d(\ln y)}{dx} = \boxed{8x}$$

165. Answer is C.

If
$$f(x) = \ln(x^2 - e^{2x})$$
 then $f'(1) =$
 $f'(x) = \frac{2x - 2e^{2x}}{x^2 - e^{2x}}$
 $f'(1) = \frac{2(1) - 2e^{2(1)}}{(1)^2 - e^{2(1)}} = \frac{2 - 2e^2}{1 - e^2} = \frac{2(1 - e^2)}{1 - e^2} = \boxed{2}$

166. Answer is B.

Write the equation of the line perpendicular to the tangent of the curve represented by the equation $y = e^{x+1}$ at x = 0

167. Answer is B.

The second derivative of $f(x) = \ln x$ at x = 3 is

$$f'(x) = \frac{1}{x} = x^{-1}$$
$$f''(x) = -x^{-2} = \frac{-1}{x^2}$$
$$f''(3) = \frac{-1}{(3)^2} = \boxed{\frac{-1}{9}}$$

168. Answer is A.

Find the equation of the line tangent to $f(x) = 2x + 2e^x$ at x = 0

$$\begin{array}{c|c} f(x) = 2x + 2e^{x} \\ f'(x) = 2 + 2e^{x} \\ f'(0) = 2 + 2e^{0} = 4 \end{array} \end{array} | \begin{array}{c} \text{Point } (0,2) & m = 4 \\ \text{Line} \rightarrow & y = 4x + 2 \end{array}$$

169. Answer is D.

Find y'' for
$$y = x \ln x - 3x$$

 $y' = x(\frac{1}{x}) + \ln x(1) - 3 \leftarrow \text{product rule}$
 $y' = \ln x - 2$
 $y'' = \boxed{\frac{1}{x}}$

170. Answer is A.

If
$$f(x) = e^{\frac{1}{x}} = e^{x^{-1}}$$
 then $f'(x) =$
$$f'(x) = e^{\frac{1}{x}}(-1x^{-2}) = \boxed{\frac{-e^{\frac{1}{x}}}{x^2}}$$

171. Answer is B.

If
$$f(x) = \ln \sqrt{x}$$
 then $f''(x) =$
 $f(x) = \ln x^{\frac{1}{2}} = \frac{1}{2} \ln x$
 $f'(x) = \frac{1}{2} \left(\frac{1}{x}\right) = \frac{1}{2} x^{-1}$
 $f''(x) = \frac{1}{2} (-1x^{-2}) = \boxed{\frac{-1}{2x^2}}$

172. Answer is C.

Difficulty = 0.88

If
$$f(x) = (x-1)^{\frac{3}{2}} + \frac{e^{x-2}}{2}$$
 then $f'(2) =$
$$f'(x) = \frac{3}{2}(x-1)^{\frac{1}{2}} + \frac{1}{2}(1)e^{x-2}$$
$$f'(2) = \frac{3}{2}\sqrt{(2-1)} + \frac{1}{2}e^{2-2} = \frac{3}{2} + \frac{1}{2}e^{0} = \boxed{2}$$

173. Answer is C.

If
$$y = \ln(e^{-t^2} + 10)$$
 then $\frac{dy}{dx} =$
$$y' = \frac{e^{-t^2}(-2t)}{e^{-t^2} + 10} = \boxed{\frac{-2te^{-t^2}}{e^{-t^2} + 10}}$$

174. Answer is B.

175. Answer is B.

176. Answer is A.

The graph of the twice differentiable function f(x) is shown in the graph. Which of the following statements is true ?

 $f(2) = negative \rightarrow below x-axis$ $f'(2) = zero \rightarrow horizontal tangent$ $f''(2) = positive \rightarrow concave upwards$ $\therefore \quad \underbrace{f(2)}_{negative} < \underbrace{f'(2)}_{zero} < \underbrace{f''(2)}_{positive}$

177. Answer is D.

Simplify:		$\frac{n16}{-3\ln 2} =$					
$\frac{\ln 1}{3\ln 4 - 1}$	-	$=\frac{\ln 2^4}{3\ln 2^2 - 3\ln 2} =$	$=\frac{4\ln 2}{6\ln 2 - 3\ln 2} =$	$=\frac{4\ln 2}{3\ln 2}=$	$\frac{4}{3}$		

178. Answer is C.

Find the equation of the line perpendicular to the line tangent to $f(x) = \ln(3-2x)$ at x = 1

$f(x) = \ln(3 - 2x)$ $f'(x) = \frac{-2}{3 - 2x}$	Point (1,0) $m = \frac{1}{2}$
$f'(1) = \frac{-2}{3 - 2(1)} = -2$	Normal line $\rightarrow slope = \frac{rise}{run} = \frac{1}{2} = \frac{y-0}{x-1}$
	$2y = x - 1$ $y = \frac{1}{2}(x - 1)$
Slope of normal $=\frac{1}{2}$	$y - \frac{1}{2}(x - 1)$

179.

Implicit Differentiation \rightarrow used when it is very difficult or impossible to isolate the variable y in terms of x Involves lots of chain rule/product rule operations.

180. Answer is A.

If
$$xy + y = 3$$
 then $\frac{dy}{dx} =$
 $xy + y = 3$
 $xy' + y + y' = 0$
 $y'[x+1] = -y$
 $\frac{dy}{dx} = \frac{-y}{x+1}$

181. Answer is C.

If
$$x + y = xy$$
 then $\frac{dy}{dx} =$
 $1 + y' = xy' + y$
 $y' - xy' = y - 1$
 $y'(1 - x) = y - 1$
 $y' = \frac{y - 1}{1 - x} = \boxed{\frac{1 - y}{x - 1}}$

182. Answer is C.

If
$$y^2 - 2xy = 16$$
 then $\frac{dy}{dx} =$
 $2yy' - 2[xy' + y] = 0$
 $2yy' - 2xy' = 2y$
 $2y'(y - x) = 2y$
 $2y'(y - x) = \frac{2y}{2(y - x)} = \frac{y}{y - x}$

183. Answer is A.

If
$$x^{2} + xy + y^{3} = 0$$
 then in terms of x and y , $\frac{dy}{dx} = x^{2} + xy + y^{3} = 0$
 $2x + [xy' + y] + 3y^{2}y' = 0$
 $2x + xy' + y + 3y^{2}y' = 0$
 $y'[x + 3y^{2}] = -2x - y$
 $\frac{dy}{dx} = \frac{-2x - y}{x + 3y^{2}} = -\frac{2x + y}{x + 3y^{2}}$

184. Answer is E.

If
$$x^2 - 2xy + 3y^2 = 8$$
 then $\frac{dy}{dx} =$
 $2x - 2[xy' + y] + 6yy' = 0$
 $2x - 2xy' - 2y + 6yy' = 0$
 $y'[6y - 2x] = 2y - 2x$
 $\frac{dy}{dx} = \frac{2y - 2x}{6y - 2x} = \frac{2(y - x)}{2(3y - x)} = \boxed{\frac{y - x}{3y - x}}$

Find
$$\frac{dy}{dx}$$
 if $x^2 + y^2 = -2xy$
 $2x + 2yy' = -2[xy' + y]$
 $2x + 2yy' = -2xy' - 2y$
 $2yy' + 2xy' = -2y - 2x$
 $y'(2y + 2x) = -2(y + x)$
 $y' = \frac{-2(y + x)}{2(y + x)} = \boxed{-1}$

186. Answer is B.

-

Find y' if
$$y^2 - 3xy + x^2 = 7$$

 $y^2 - 3xy + x^2 = 7$
 $2yy' - 3[xy' + y] + 2x = 0$
 $2yy' - 3xy' - 3y + 2x = 0$
 $y'[2y - 3x] = 3y - 2x$
 $y' = \boxed{\frac{3y - 2x}{2y - 3x}}$

187. Answer is C.

Given y is a differentiable function of x, find
$$\frac{dy}{dx}$$
 for $x^3 - xy + y^3 = 1$

$$3x^2 - [xy' + y] + 3y^2y' = 0$$

$$3x^2 - xy' - y + 3y^2y' = 0$$

$$y'[3y^2 - x] = y - 3x^2$$

$$\frac{dy}{dx} = \frac{y - 3x^2}{3y^2 - x}$$

188. Answer is B.

If
$$y^2 = x + y^3$$
 then $y' =$
 $2yy' = 1 + 3y^2y'$
 $2yy' - 3y^2y' = 1$
 $y' [2y - 3y^2] = 1$
 $y' = \frac{1}{2y - 3y^2}$

189. Answer is A.

Find
$$\frac{dy}{dx}$$
 for $2x^2 + xy + 3y^2 = 0$
 $4x + [xy' + y] + 6yy' = 0$
 $xy' + 6yy' = -4x - y$
 $y'[x + 6y] = -4x - y$
 $y' = -\frac{4x + y}{x + 6y}$

190. Answer is B.

Given y is a differentiable function of x, find
$$\frac{dy}{dx}$$
 for $3x^2 - 2xy + 5y^2 = 1$
 $6x - 2[xy' + y] + 10yy' = 0$
 $6x - 2xy' - 2y + 10yy' = 0$
 $y'[10y - 2x] = 2y - 6x$
 $y' = \frac{2(y - 3x)}{2(5y - x)}$
 $\frac{dy}{dx} = \frac{y - 3x}{5y - x}$

191. Answer is C.

If
$$x^{2} + y^{3} = x^{3}y^{2}$$
 then $\frac{dy}{dx} =$
 $2x + 3y^{2}y' = x^{3}2yy' + y^{2}(3x^{2})$
 $3y^{2}y' - 2x^{3}yy' = 3x^{2}y^{2} - 2x$
 $y'(3y^{2} - 2x^{3}y) = 3x^{2}y^{2} - 2x$
 $y' = \boxed{\frac{3x^{2}y^{2} - 2x}{3y^{2} - 2x^{3}y}}$

.

192. Answer is A.

If $xy^2 - y^3 = x^2 - 5$ then $\frac{dy}{dx} =$ $\begin{bmatrix} x^2yy' + y^2 \end{bmatrix} - 3y^2y' = 2x - 0$ $2xyy' - 3y^2y' = 2x - y^2$ $y'(2xy - 3y^2) = 2x - y^2$ $y' = \frac{2x - y^2}{2xy - 3y^2} = \boxed{\frac{y^2 - 2x}{3y^2 - 2xy}}$

193. Answer is A.

Difficulty = **0.66**

If
$$x^3 + 3xy + 2y^3 = 17$$
 then in terms of x and y $\frac{dy}{dx} =$
 $x^3 + 3xy + 2y^3 = 17$
 $3x^2 + 3[xy' + y] + 6y^2y' = 0$
 $3x^2 + 3xy' + 3y + 6y^2y' = 0$
 $y'[6y^2 + 3x] = -3x^2 - 3y$
 $\frac{dy}{dx} = \frac{-3x^2 - 3y}{6y^2 + 3x} = \frac{-\cancel{3}(x^2 + y)}{\cancel{3}(2y^2 + x)} = \boxed{-\frac{x^2 + y}{x + 2y^2}}$

194. Answer is E.

Find
$$\frac{dy}{dx}$$
 for $e^y = xy$
 $e^y y' = xy' + y$
 $e^y y' - xy' = y$
 $y'(e^y - x) = y$
 $y' = \frac{y}{\frac{e^y}{xy} - x} = \boxed{\frac{y}{xy - x}}$

195. Answer is D.

Find y' if
$$\ln xy = x + y$$

 $\ln x + \ln y = x + y$
 $\frac{1}{x} + \frac{y'}{y} = 1 + y'$
 $\frac{y'}{y} - y' = 1 - \frac{1}{x}$
 $y'(\frac{1}{y} - 1) = \frac{x - 1}{x}$
 $y' = \left[\frac{\frac{x - 1}{x}}{\frac{1 - y}{y}}\right] = \left(\frac{x - 1}{x}\right)\left(\frac{y}{1 - y}\right) = \left[\frac{xy - y}{x - xy}\right]$

196. Answer is B.

Find y' if
$$xe^{y} + 1 = xy$$

$$\begin{bmatrix} xe^{y}y' + e^{y} \end{bmatrix} + 0 = \begin{bmatrix} xy' + y \end{bmatrix}$$

$$xe^{y}y' - xy' = y - e^{y}$$

$$y' \begin{bmatrix} xe^{y} - x \end{bmatrix} = y - e^{y}$$

$$y' = \frac{y - e^{y}}{xe^{y} - x}$$

197. Answer is C.

Consider the curve $x + xy + 2y^2 = 6$ The slope of the line tangent to the curve at the point (2, 1) is

$$1 + [xy' + y] + 2(2)yy' = 0$$

$$1 + xy' + y + 4yy' = 0$$

$$y'(x + 4y) = -y - 1$$

$$y' = \frac{-y - 1}{x + 4y}$$

$$y'(2, 1) = \frac{-1 - 1}{2 + 4(1)} = \frac{-2}{6} = \boxed{\frac{-1}{3}}$$

The equation of the tangent to the curve $2x^2 - y^4 = 1$ at the point (-1, 1) is

ı.

$$\begin{array}{c|c} 2x^2 - y^4 = 1 \\ 4x - 4y^3 y' = 0 \\ 4x = 4y^3 y' \\ \frac{x}{y^3} = y' \end{array}$$
Slope of tangent at (-1, 1)
$$\begin{array}{c} y' = \frac{x}{y^3} \\ y'(-1, 1) = \frac{-1}{(1)^3} = -1 \end{array}$$
Equation of tangent at (-1, 1)
Slope = $\frac{rise}{run} = \frac{-1}{1} = \frac{y - 1}{x + 1} \\ y - 1 = -1x - 1 \\ y = -x \end{array}$

199. Answer is E.

If
$$y^2 - 2xy = 21$$
 then $\frac{dy}{dx}$ at the point (2,-3) is

$$2yy' - 2[xy' + y] = 0$$

$$2yy' - 2xy' - 2y = 0$$

$$y'(2y - 2x) = 2y$$

$$y' = \frac{2'y}{2'(y - x)} = \frac{y}{y - x}$$

$$y'(2, -3) = \frac{-3}{-3 - 2} = \frac{-3}{-5} = \boxed{\frac{3}{5}}$$

200. Answer is A. Diagram is to help in the learning process only !

The slope of the curve
$$y^2 - xy - 3x = 1$$
 at the
point (0,-1) is
 $2yy' - [xy' + y(1)] - 3 = 0$
 $2yy' - xy' - y - 3 = 0$
 $y'[2y - x] = y + 3$
 $y' = \frac{y + 3}{2y - x}$
 $\frac{dy}{dx}(0,-1) = \frac{-1 + 3}{2(-1) - 0} = \frac{2}{-2} = \boxed{-1}$

х

202. Answer is A. Diagram is to help in the learning process only !

The slope of the line tangent to the graph of
$3x^2 + 5\ln y = 12$ at (2, 1) is
$3x^2 + 5\ln y = 12$
$6x + 5\frac{y'}{y} = 0$
y
6xy + 5y' = 0
$y' = \frac{-6xy}{5}$
$y'(2, 1) = \frac{-6(2)(1)}{5} = \boxed{-\frac{12}{5}}$

If $y = \ln(x^2 + y^2)$ then the value of $\frac{dy}{dx}$ at the point (1, 0) is $y = \ln(x^2 + y^2)$ $y' = \frac{2x + 2yy'}{x^2 + y^2}$ $y'(x^2 + y^2) = 2x + 2yy'$ $y'(x^2 + y^2) - 2yy' = 2x$ $y'(x^2 + y^2 - 2y) = 2x$ $y' = \frac{2x}{x^2 + y^2 - 2y}$ $y'(1, 0) = \frac{2(1)}{(1)^2 + (0)^2 - 2(0)} = \boxed{2}$

204. Answer is B.

Consider the curve $5x - xy + y^2 = 7$ The slope of the line tangent to the curve at the point (1, 2) is

$$5 - [xy' + y] + 2yy' = 0$$

$$5 - xy' - y + 2yy' = 0$$

$$2yy' - xy' = y - 5$$

$$y'(2y - x) = y - 5$$

$$y' = \frac{y - 5}{2y - x}$$

$$y'(1, 2) = \frac{2 - 5}{2(2) - 1} = \frac{-3}{3} = \boxed{-1}$$

205. Answer is A. Diagram is to help in the learning process only !

•

The equation of the line tangent to the curve $y^2 - 2x - 4y = 1$ at (-2, 1) is

$$y^{2} - 2x - 4y = 1$$

$$2yy' - 2 - 4y' = 0$$

$$y'(2y - 4) = 2$$

$$y' = \frac{2}{2(y - 2)} = \frac{1}{y - 2}$$

$$y'(-2, 1) = \frac{1}{1 - 2} = -1$$

Point (-2, 1) and slope $m = -1$
Slope $= \frac{rise}{run} = \frac{-1}{1} = \frac{y - 1}{x + 2}$

$$y - 1 = -x - 2$$

$$y = -x - 1$$

207. Answer is B.

If
$$xy^2 + 2xy = 8$$
 then at the point (1, 2) $y' =$

$$\begin{bmatrix} x^2yy' + y^2 \end{bmatrix} + 2[xy' + y] = 0$$

$$2xyy' + y^2 + 2xy' + 2y = 0$$

$$y'(2xy + 2x) = -2y - y^2$$

$$y' = \frac{-2y - y^2}{2xy + 2x}$$

$$y'(1, 2) = \frac{-2(2) - (2)^2}{2(1)(2) + 2(1)} = \frac{-4 - 4}{4 + 2} = \frac{-8}{6} = \boxed{-\frac{4}{3}}$$

208. Answer is D.

If

$$7 = xy - e^{xy} \quad \text{then} \quad \frac{dy}{dx} = 0 = [xy' + y] - e^{xy} [xy' + y]$$

$$0 = [xy' + y - xy'e^{xy} - ye^{xy}]$$

$$ye^{xy} - y = y'(x - xe^{xy})$$

$$ye^{xy} - y = y'(x - xe^{xy})$$

$$\frac{-y}{x} = \frac{-y(1 - e^{xy})}{x(1 - e^{xy})} = \frac{y(e^{xy} - 1)}{x(1 - e^{xy})} = \frac{ye^{xy} - y}{x - xe^{xy}} = y'$$

209. Answer is C.

Which is the slope of the line tangent to $y^2 + xy - x^2 = 11$ at (2, 3)

$$2yy' + [xy' + y] - 2x = 0$$

$$2yy' + xy' = 2x - y$$

$$y'(2y + x) = 2x - y$$

$$y' = \frac{2x - y}{2y + x}$$

$$y'(2, 3) = \frac{2(2) - (3)}{2(3) + (2)} = \boxed{\frac{1}{8}}$$

210. Answer is D.

The slope of the line tangent to the curve $3x^2 - 2xy + y^2 = 11$ at the point (1,-2) is

$$3(2x) - 2[xy' + y] + 2yy' = 0$$

$$6x - 2xy' - 2y + 2yy' = 0$$

$$2y'(y - x) = 2y - 6x$$

$$y' = \frac{2(y - 3x)}{2(y - x)} = \frac{y - 3x}{y - x}$$

$$y'(1, -2) = \frac{(-2) - 3(1)}{(-2) - (1)} = \frac{-5}{-3} = \boxed{\frac{5}{3}}$$

211. Answer is D. Diagram is to help in the learning process only !

212. Answer is B.

Suppose
$$x^2 - xy + y^2 = 3$$
 Find $\frac{dy}{dx}$ at the point (a, b)
 $2x - [xy' + y] + 2yy' = 0$
 $2x - xy' - y + 2yy' = 0$
 $y'[2y - x] = y - 2x$
 $\frac{dy}{dx} = \frac{y - 2x}{2y - x}$
 $\frac{dy}{dx}(a, b) = \boxed{\frac{b - 2a}{2b - a}}$

If
$$(x-y)^2 = y^2 - xy$$
 then $\frac{dy}{dx} =$
 $2(x-y)^1(1-y') = 2yy' - [xy'+y]$
 $2x - 2xy' - 2y + 2yy' = 2yy' - xy' - y$
 $-2xy' + xy' = -y + 2y - 2x$
 $-xy' = y - 2x$
 $y' = \frac{y - 2x}{-x} = \frac{2x - y}{x}$

214. Answer is D.

The slope of the line tangent to the graph of $\ln(x + y) = x^2$ at the point where x = 1 is $\begin{aligned}
\ln(x + y) &= x^2 \\
\frac{1 + y'}{(x + y)} &= 2x \\
1 + y' &= 2x(x + y) \\
y' &= 2x^2 + 2xy - 1 \\
y'(1, e - 1) &= 2(1)^2 + 2(1)(e - 1) - 1 \\
y'(1, e - 1) &= 2e - 1
\end{aligned}$ Find point of tangency where x = 1 $\ln(x + y) &= x^2 \\
\ln(1 + y) &= 1 \\
1 + y &= e^1 \\
y &= e - 1 \rightarrow \text{point } (1, e - 1) \\
y'(1, e - 1) &= 2e - 1
\end{aligned}$

215. Answer is A.

The slope of the line tangent to the graph of $\ln(xy) = x$ at the point where x = 1 is $\ln x + \ln y = x$ $\frac{1}{x} + \frac{y'}{y} = 1$ $\frac{y'}{y} = 1 - \frac{1}{x}$ $y'(1, e) = e\left(\frac{1-1}{1}\right) = \boxed{0}$

216. Answer is B.

If
$$e^{xy} = \ln x$$
, then $\frac{dy}{dx} =$
 $e^{xy} [xy' + y] = \frac{1}{x}$
 $xy'e^{xy} + ye^{xy} = \frac{1}{x}$
 $xy'e^{xy} = \frac{1}{x} - ye^{xy} = \frac{1 - xye^{xy}}{x}$
 $y' = \left[\frac{1 - xye^{xy}}{x^2e^{xy}}\right]$

217. Answer is C.

The curve defined by $x^3 + xy - y^2 = 10$ has a vertical tangent line when x = $3x^2 + [xy' + y] - 2yy' = 0$ $3x^2 + xy' + y - 2yy' = 0$ $y'[x - 2y] = -y - 3x^2$ $y' = \frac{-y - 3x^2}{x - 2y}$ $x^3 + xy - y^2 = 10$ $x^3 + \frac{x^2}{2} - \frac{x^2}{4} = 10$ $4x^3 + 2x^2 - x^2 = 40$ $4x^3 + x^2 - 40 = 0$ x = 2.0742

Difficulty = 0.58

219. Answer is C.

The curve
$$3y^2 - 3xy + 2x^3 = 7$$
 has vertical tangents when
 $3(2yy') - 3[xy' + y] + 2(3x^2) = 0$
 $6yy' - 3xy' - 3y + 6x^2 = 0$
 $y'(6y - 3x) = 3y - 6x^2$
 $y' = \frac{3(y - 2x^2)}{3(2y - x)}$
 $y' = \frac{y - 2x^2}{2y - x}$
 $y' = \frac{y - 2x^2}{2y - x}$

220. Answer is A.

If
$$e^{xy} = 2$$
 then at the point (1, ln 2) $\frac{dy}{dx} =$
 $e^{xy} [xy' + y(1)] = 0 \quad \leftarrow \text{ product rule}$
 $xy'e^{xy} + ye^{xy} = 0$
 $y' = \frac{-ye^{xy}}{xe^{xy}} = \frac{-y}{x}$
 $y'(1, \ln 2) = \frac{-\ln 2}{1} = \boxed{-\ln 2}$

221. Answer is D. Diagram is to help in the learning process only !

222. Answer is A. Diagram is to help in the learning process only !

If
$$2x^3 + 3xy + e^y = 6$$
 what is y' when $x = 0$
When $x = 0$
 $2x^3 + 3xy + e^y = 6$
 $2x^3 + 3xy + e^y = 6$
 $2(0)^3 + 3(0)y + e^y = 6$
 $e^y = 6$
 $y = \ln 6$
point (0, ln 6)
 $y'(0, \ln 6) = \frac{-3 \ln 6 - 6(0)^2}{3(0) + e^{\ln 6}} = \frac{-3 \ln 6}{6} \approx -0.8958$

223. Answer is A.

If
$$\frac{dy}{dx} = 1 + y^2$$
 then $\frac{d^2 y}{dx^2} =$
 $y' = 1 + y^2$
 $y'' = 0 + 2yy' = 2y(y') = 2y(1 + y^2)$

If a point moves on the curve $x^2 + y^2 = 25$, then, at (0, 5), $\frac{d^2 y}{dx^2}$ is

$x^2 + y^2 = 25$	yy' = -x
2x + 2yy' = 0	$\left[yy'' + y'y' \right] = -1$
2yy' = -2x	$yy^{\prime\prime} + (y^{\prime})^2 = -1$
$y' = -\frac{\cancel{2}x}{\cancel{2}y} = -\frac{x}{\cancel{y}} \rightarrow$ $y'(0, 5) = -\frac{0}{5} = 0 \rightarrow$	$y'' = \frac{-1 - (y')^2}{y}$ $y''(0, 5) = \frac{-1 - (0)^2}{5} = \boxed{-\frac{1}{5}}$

225. Answer is E.

If
$$y^2 - 3x = 7$$
 then $\frac{d^2 y}{dx^2} =$
 $y^2 - 3x = 7$
 $2yy' - 3 = 0 \leftarrow y' = \frac{3}{2y}$
 $2[yy'' + y'y'] - 0 = 0$
 $2yy'' + 2y'y' = 0$
 $y'' = \frac{-2y'y'}{2y} = \frac{-(\frac{3}{2y})(\frac{3}{2y})}{\frac{y}{1}} = \frac{-9}{4y^2} \times \frac{1}{y} = \boxed{\frac{-9}{4y^3}}$

226. Answer is B.

Difficulty = 0.25

If
$$\frac{dy}{dx} = \sqrt{1 - y^2}$$
, then $\frac{d^2 y}{dx^2} =$
 $y' = (1 - y^2)^{\frac{1}{2}}$
 $y'' = \frac{1}{2}(1 - y^2)^{-\frac{1}{2}}(-2yy')$
 $y'' = \frac{1(-2yy')}{2(1 - y^2)^{\frac{1}{2}}} = \frac{-yy'}{y'} = \boxed{-y}$

227. Answer is D.

Difficulty = 0.79

The table gives values of f, f', g and g' at selected values of x If h(x) = f(g(x)) then h'(1) =h'(x) = f'(g(x))g'(x)h'(1) = f'(g(1))g'(1)h'(1) = f'(-1)[2]h'(1) = 5[2] = 10

x	f(x)	f'(x)	g(x)	g'(x)
-1	6	5	3	-2
1	3	-3	-1	2
3	1	-2	2	3

228. Answer is A.

If $f(x) = \frac{4}{x-1}$ and $g(x) = 2x$	then the solution set of $f(g(x)) = g(f(x))$ is
	$\frac{4}{2x-1} = 2\left(\frac{4}{x-1}\right)$
	$\frac{4}{2x-1} = \frac{8}{x-1}$
	2x-1 x-1 $16x-8=4x-4$
	12x = 4
	$x = \frac{1}{3}$

229. Answer is D.

Let f and g be differentiable function	ns such that	
f(1) = 2	f'(1) = 3	f'(2) = -4
g(1) = 2	g'(1) = -3	g'(2) = 5
If $h(x) = f(g(x))$ then $h'(1) =$		
h'(x) = f'(g(x))g'(x)		
h'(1) = f'(g(1))g'(1)		
h'(1) = f'(2)[-3]		
h'(1) = -4[-3] = 12		

230. Answer is A.

Difficulty = **0.60**

If
$$f$$
 and g are twice differentiable and if $h(x) = f(g(x))$, then $h''(x) = h(x) = f(g(x))$,
 $h'(x) = f'(g(x))g'(x) = [f'(g(x))][g'(x)] \leftarrow \text{product rule}$
 $h''(x) = f'(g(x))g''(x) + f''(g(x))g'(x)g'(x)$
 $h''(x) = [f'(g(x))g''(x) + f''(g(x))[g'(x)]^2]$

Let f and g be differentiable functions such that f(1) = 4, g(1) = 3, f'(3) = -5 f'(1) = -4, g'(1) = -3, g'(3) = 2If h(x) = f(g(x)) then h'(1) = h'(x) = f'(g(x))g'(x) h'(1) = f'(g(1))g'(1) =h'(1) = f'(3)(-3) = (-5)(-3) = 15

232. Answer is E.

The function **F** is defined by F(x) = G[x+G(x)]where the graph of the function **G** is shown on the right. The approximate value of F'(1) = F(x) = G[x+G(x)]

$$F(x) = G[x + G(x)]$$

$$F'(x) = G'[x + G(x)](1 + G'(x))$$

$$F'(1) = G'[1 + G(1)](1 + G'(1))$$

$$F'(1) = G'[1 + 3](1 + (-2))$$

$$F'(1) = G'[4](-1)$$

$$F'(1) = \frac{2}{3}(-1) = \boxed{-\frac{2}{3}}$$

233. Answer is D.

The graphs of functions f and g are 5**T** shown on the right. If h(x) = g[f(x)]f(x)g(x)which of the following statements are 3 3 true about the function *h* 2 2 I. h(0) = 41 1 **II**. *h* is increasing at x = 2x **III**. The graph of *h* has a horizontal đ 5 Ο ŝ. 2 4 tangent at x = 4h'(x) = g'[f(x)]f'(x)II. $h'(2) = g'[f(2)]f'(2) = g'[1](-\frac{1}{2}) = -2(-\frac{1}{2}) = positive$ *h* is increasing at x = 2 \square True h'(2) > 0III. h'(4) = g' [f(4)] f'(4) = g' [2](1) = 0(1) = 0The graph of *h* has a horizontal tangent at x = 4 \square True h'(4) = 0

234. Answer is D.

$$h(x) = f(g(x))$$

$$h'(x) = f'(g(x))g'(x) = 0 \quad \leftarrow \text{ horizontal tangent}$$

$$\begin{bmatrix} f'(g(x) = -2) \rightarrow x = -2, -4 \\ f'(g(x) = 1) \rightarrow x = 0, 3.4 \end{bmatrix} [x = -3, 0, 2] = 0$$

$$x = 0 \text{ is duplicated} \begin{bmatrix} x = -2, -4 \\ x = 0, 3.4 \end{bmatrix} [x = -3, 0, 2] = 0 \quad \leftarrow \boxed{6} \text{ horizontal tangent lines}$$

235. Answer is D.

The graphs of functions f and g are shown at the right. If h(x) = f[g(x)], 5 which of the following statements are f(x)g(x)4 true about the function *h* 3. 3 I. h(2) = 52 2 **II**. *h* is increasing at x = 41 **III**. The graph of **h** has a horizontal x х 0 5 0 tangent at x = 1I. $h(2) = f[g(2)] = f[4] = 3 \neq 5$ E False h'(x) = f'[g(x)]g'(x)h'(4) = f'[g(4)]g'(4) = f'[1](-1) = (-1)(-1) = positiveII. *h* is increasing at x = 4 \square True h'(4) > 0h'(1) = f'[g(1)]g'(1) = f'[3](0) = (1)(0) = 0**III**. The graph of **h** has a horizontal tangent at x = 1 \square True h'(4) = 0

236. Answer is A.

Difficulty = 0.39

237. Answer is C.

The graph of y = f(x) on the closed interval [2, 7] is shown. How many points of inflection does this graph have on this interval ? Points of inflection occur where the concavity *changes*; marked on the graph on the right with a vertical line. 3 points of inflection

238. Answer is E.

y = f'(x)

min

239. Answer is B.

240. Answer is C.

241. Answer is B.

The function defined by $f(x) = (x-1)(x+2)^2$ has inflection points at x =

$$f(x) = (x-1)(x+2)^2 \quad \leftarrow y = f(x) \text{ degree 3 (maximum of one inflection point)}$$

$$f(x) = (x-1)(x^2 + 4x + 4)$$

$$f(x) = x^3 + 3x^2 - 4$$

$$f'(x) = 3x^2 + 6x$$

$$f''(x) = 6x + 6 = 0$$

$$6x = -6$$

$$\boxed{x = -1}$$
Inflection number

242. Answer is D.

x	-8	-6	-4	<u>-2</u>	0	2	4
f(x)	0	5	0	x-value 2 y-value	-4	-6	-4
f'(x)	4	0	-4	-2 slope	-1	0	1
<i>f</i> "(<i>x</i>)	-2	-6	-2	0 change concavity	1	4	3
	$\lambda + 2$						
	f'(x) $f'(x)$ $f''(x)$ $f''(x)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f(x) = \frac{1}{1} + \frac{1}{1}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

v = -x - 6

243. Answer is B.

244. Answer is D.

If $f'(x) = x^3(x+2)^2$ then the graph of f has inflection points when x = $f'(x) = x^3(x+2)^2 \leftarrow$ product rule $f''(x) = x^3 2(x+2)^1 + (x+2)^2 3x^2$ $f''(x) = 2x^3(x+2) + 3x^2(x+2)^2$ $f''(x) = x^2(x+2)[2x+3(x+2)]$ $f''(x) = x^{2-bounce}(x+2)^{1-cross}(5x+6)^{1-cross}$ Inflection points (concavity changes) occur at $x = 2, -\frac{6}{5}$

245. Answer is E.

If $f'(x) = -5(x-3)^2(x-2)$ which of the following features does the graph of f(x) have? Sketch the graph of y = f'(x) with zero's at x = 2, 3 and end behaviour $\overline{\}$ $f'(x) = -5(x-3)^{2-bounce}(x-2)^{1cross}$ \rightarrow f(x) local maximum at x = 2 because f'(x) changes from positive to negative \rightarrow inflection point at x = 3 because slope of f'(x) = 0(another inflection point at $x \approx 2.3$)

246. Answer is B.

A function f(x) exists such that $f''(x) = (x-2)^2(x+1)$ How many points of inflection does f(x) have? Sketch $f''(x) = (x-2)^{2-bounce} (x+1)^{1-cross}$ $f''(x-a) = 0 \leftarrow$ inflection point if and only if f''(x) changes sign at x = a (no bounce) f(x) has 1 point of inflection when x = -1

247. Answer is B.

 $f(x) = x^2 - 3x^3$ has a point of inflection at $f(x) = x^2 - 3x^3$ Inflection number $\frac{1}{9}$ $f'(x) = 2x - 9x^2$ $-\infty < x < \frac{1}{9}$ $\frac{1}{9} < x < \infty$ Interval $f^{\prime\prime}(x) = 2 - 18x = 0$ f''(1) = f''(0) = +f''(x)2 = 18xf(x)Concave *up* | Concave *down* $\frac{1}{9} = x$ There is 1 inflection point (concavity changes once) at $x = \frac{1}{9}$

Possible Inflection number

248. Answer is C.

249. Answer is C.

The number of *inflection points* in the curve $f(x) = x^4 - 4x^2$ is

$$f(x) = x^{4} - 4x^{2}$$

$$f'(x) = 4x^{3} - 8x$$

$$f''(x) = 12x^{2} - 8 = 0$$

$$12x^{2} = 8$$

$$x^{2} = \frac{8}{12}$$

$$x = \pm \sqrt{\frac{2}{3}}$$
Possible Inflection numbers

Inflection	numbers $-v$	$\left \frac{2}{3}\right $ $\sqrt{2}$	<u>2</u> 3
Interval	$-\infty < x < -\sqrt{\frac{2}{3}}$	$-\sqrt{\frac{2}{3}} < x < \sqrt{\frac{2}{3}}$	$\sqrt{\frac{2}{3}} < x < \infty$
f''(x)	f''(-1) = +	f''(0) = -	f''(1) = +
f(x)	Concave <i>up</i>	Concave <i>down</i>	Concave <i>up</i>

There are 2 inflection points (concavity changes twice)

T

250. Answer is B.

An equation of the line *tangent* to $y = x^3 + 3x^2 + 2$ at it's point of *inflection* is

$y = x^{3} + 3x^{2} + 2$ y' = 3x ² + 6x y'' = 6x + 6 = 0	$y = x^{3} + 3x^{2} + 2$ y(-1) = (-1)^{3} + 3(-1)^{2} + 2 y(-1) = -1 + 3 + 2 = 4	$y' = 3x^{2} + 6x$ y'(-1) = 3(-1) ² + 6(-1) y'(-1) = 3 - 6 = -3
6x = -6		Slope of tangent $= -3$
x = -1 y''(0) = positive	Point of inflection (-1, 4)	Slope = $\frac{\text{rise}}{\text{run}} = \frac{-3}{1} = \frac{y-4}{x+1}$
y''(-2) = negative		run 1 $x+1$ y-4 = -3x-3
$\therefore x = -1$ is inflection number		y = -3x + 1

If the graph of $y = x^3 + ax^2 + bx - 4$ has a point of inflection at (1, -6), what is the value of b $y = x^3 + ax^2 + bx - 4$ $y' = 3x^2 + 2ax + b$ y'' = 6x + 2a y''(1) = 6(1) + 2a = 0 \leftarrow point of inflection 2a = -6 a = -3 y'' = -6a = -3

252. Answer is C.

Difficulty = 0.40

At what value of x does the graph of
$$y = \frac{1}{x^2} - \frac{1}{x^3}$$
 have a point of inflection ?

$$y = \frac{1}{x^2} - \frac{1}{x^3} = x^{-2} - x^{-3} \quad x \neq 0$$

$$y' = -2x^{-3} + 3x^{-4}$$

$$y'' = 6x^{-4} - 12x^{-5} = \frac{6}{x^4} - \frac{12}{x^5} = 0$$

$$\frac{6}{x^4} = \frac{12}{x^5}$$

$$12x^4 = 6x^5$$

$$12x^4 - 6x^5 = 0$$

$$\frac{6x^4(2-x) = 0}{x^2 = x}$$
Note this is *not* a polynomial graph, it is not
defined when $x = 0$

$$y'' = \frac{6}{x^4} - \frac{12}{x^5} = \frac{6x - 12}{x^5}$$

$$y''(1) = \frac{6(1) - 12}{1^5} = negative$$

$$y''(3) = \frac{6(3) - 12}{3^5} = positive$$
Concavity changed at $x = 2$
Possible Inflection number

253. Answer is C.

What is the value of k such that the curve $y = x^3 - \frac{k}{x}$ has a point of inflection at x = 1 $y = x^3 - \frac{k}{x} = x^3 - kx^{-1}$ $y' = 3x^2 + kx^{-2}$ $y'' = 6x - 2kx^{-3} = 6x - \frac{2k}{x^3}$ $y''(1) = 6(1) - \frac{2k}{(1)^3} = 0$ 6 - 2k = 0 3 = k

The curve 1	$y = x^5 + 10x^4 - 5$	has points of inflection at $x =$
-------------	-----------------------	-----------------------------------

T

$y = x^{5} + 10x^{4} - 5$ $y' = 5x^{4} + 40x^{3}$	Inflection numbers -6 0					
$y'' = 20x^3 + 120x^2 = 0$	Interval	$-\infty < x < -6$	-6 < x < 0	$0 < x < \infty$		
$\frac{20x^{2}(x+6)=0}{20x^{2}(x+6)=0}$	f''(x)	f''(-7) = -	f''(-1) = +	f''(1) = +		
	f(x)	Concave <i>down</i>	Concave <i>up</i>	Concave <i>up</i>		
x = 0 x = -6 Possible inflection points	There is 1 inflection point (concavity changes once) when $x = -6$					

255. Answer is E.

The curve $y = 1 - 6x^2 - x^4$ has inflection points at x =

$$y' = -12x - 4x^{3}$$
$$y'' = -12 - 12x^{2}$$
$$y'' = -12(1 + x^{2}) = 0$$
No solution, therefore *no* inflection points.

256. Answer is A.

The slope of the line tangent to the curve $f(x) = x^3 + 3x^2 - 24x + 4$ at the point of inflection is

 $f(x) = x^{3} + 3x^{2} - 24x + 4$ $f'(x) = 3x^{2} + 6x - 24$ f''(x) = 6x + 6 = 0 6(x + 1) = 0 x = -1Inflection point $f'(x) = 3x^{2} + 6x - 24$ $f'(-1) = 3(-1)^{2} + 6(-1) - 24$ $f'(-1) = 3 - 6 - 24 = \boxed{-27}$

257. Answer is E.

The curve $y = 3x^4 - 8x^3 + 6x^2 - 1$ has points of inflection at x = $y' = 12x^3 - 24x^2 + 12x$ $y'' = 36x^2 - 48x + 12 = 0$ $3x^2 - 4x + 1 = 0$ \leftarrow parabola opening up with zero's at $x = \frac{1}{3}$, 1 (3x - 1)(x - 1) = 0 $\therefore y = f''(x)$ must change sign twice. $\overline{x = \frac{1}{3}} | x = 1$

Inflection numbers

The equation of the line tangent to the curve $f(x) = 2x^3 - 3x^2$ at the point of inflection is

$f(x) = 2x^3 - 3x^2$ $f(x) = 2x^3 - 3x^2$ $f'(x) = 6x^2 - 6x$ $f'(x) = 6x^2 - 6x$ $f(x) = 2x^3 - 3x^2$ $f'(\frac{1}{2}) = 6(\frac{1}{2})^2 - 6(\frac{1}{2}) = \frac{3}{2} - 3 = -\frac{3}{2}$ $f''(x) = 12x - 6 = 0$ $f(\frac{1}{2}) = 2(\frac{1}{2})^3 - 3(\frac{1}{2})^2$ $f'(\frac{1}{2}) = 6(\frac{1}{2})^2 - 6(\frac{1}{2}) = \frac{3}{2} - 3 = -\frac{3}{2}$ $12x = 6$ $f(\frac{1}{2}) = \frac{1}{4} - \frac{3}{4} = -\frac{1}{2}$ $Slope = \frac{-3}{2} = \frac{y + \frac{1}{2}}{x - \frac{1}{2}}$ Inflection point ($\frac{1}{2}, -\frac{1}{2}$) $4y + 2 = -6x + 3$ Inflection number $6x + 4y = 1$

259. Answer is D.

An equation for the line tangent to the curve $f(x) = -x^3 + 12x + 5$ at the point of inflection is

$f(x) = -x^3 + 12x + 5$	$f(x) = -x^3 + 12x + 5$	Equation for the line tangent at (0, 5)
$f'(x) = -3x^2 + 12$	f(0) = 5	$Slope = \frac{rise}{run} = \frac{12}{1} = \frac{y-5}{x}$
$f^{\prime\prime}(x) = -6x = 0$	(0, 5) inflection point	run 1 x
x = 0	$f'(x) = -3x^2 + 12$	y-5=12x
Inflection number	f'(0) = 12	y - 12x = 5

260. Answer is C.

The curve $y = 3x^5 - 5x^4 + 3x - 2$ has a point of inflection at			
$y = 3x^{5} - 5x^{4} + 3x - 2$ $y' = 15x^{4} - 20x^{3} + 3$ $y'' = 60x^{3} - 60x^{2} = 0$ $60x^{2}(x - 1) = 0$ $\overline{x = 0 x = 1}$ Inflection number at $x = 1$ (no bounce)	$y = 3x^{5} - 5x^{4} + 3x - 2$ $y(1) = 3(1)^{5} - 5(1)^{4} + 3(1) - 2$ y(1) = 3 - 5 + 3 - 2 = -1 Inflection point (1,-1)		

If the graph of $f(x) = 2x^2 + \frac{k}{x}$ has a point of inflection at x = -1 then the value of k is

$$f(x) = 2x^{2} + kx^{-1}$$

$$f'(x) = 4x - kx^{-2}$$

$$f''(x) = 4 + 2kx^{-3} = 4 + \frac{2k}{x^{3}}$$

$$f''(-1) = 4 + \frac{2k}{(-1)^{3}} = 0 \quad \leftarrow x = -1 \text{ at inflection point}$$

$$4 - 2k = 0$$

$$4 = 2k$$

$$\boxed{2 = k}$$

262. Answer is A.

The function $y = x^4 + bx^2 + 8x + 1$ has a horizontal tangent and a point of inflection for the same value of x What must be the value of b

$$y = x^{4} + bx^{2} + 8x + 1$$

$$y' = 4x^{3} + 2bx + 8 = 0 \quad \Rightarrow b = \frac{-8 - 4x^{3}}{2x}$$

$$y'' = 12x^{2} + 2b = 0 \quad \Rightarrow b = \frac{-12x^{2}}{2}$$

$$y'' = 12x^{2} + 2b = 0 \quad \Rightarrow b = \frac{-12x^{2}}{2}$$

$$b = \frac{-12(1)^{2}}{2} = \boxed{-6}$$

263. Answer is C.

How many points of inflection does the graph of $y = 2x^6 + 9x^5 + 10x^4 - x + 2$ have?

 $y' = 12x^{5} + 45x^{4} + 40x^{3} - 1$ $y'' = 60x^{4} + 180x^{3} + 120x^{2}$ $y'' = 60x^{2}(x^{2} + 3x + 2)$ $y'' = 60x^{2=bounce}(x+1)^{1=cross}(x+2)^{1=cross}$

y'' (crosses the *x*-axis twice \rightarrow changes sign) $\rightarrow 2$ points of inflection at x = -1 and x = -2

264. Answer is D.

If the graph of $y = x^3 + ax^2 + bx - 8$ has a point of inflection at (2, 0), what is the value of b $y' = 3x^2 + 2ax + b$ y'' = 6x + 2a y''(2) = 6(2) + 2a = 0 2a = -12 $a = -6 \rightarrow$ $y'' = 2ax + bx - 8 \leftarrow point (2, 0)$ $0 = (2)^3 + (-6)(2)^2 + b(2) - 8$ 24 = 2b12 = b

265. Answer is A.

What is the *x*-coordinate of the point of inflection on the graph of $y = xe^x$

$$y = xe^{x}$$

$$y' = xe^{x} + e^{x}$$

$$y'' = xe^{x} + e^{x} + e^{x}$$

$$y'' = xe^{x} + 2e^{x} = e^{x}(x+2) = 0$$

$$e^{x}(x+2) = 0$$

$$e^{x}(x+2) = 0$$

$$e^{x} \neq 0 \quad \boxed{x = -2}$$

266. Answer is C.

What is the *x*-coordinate of the point of inflection of the graph of $y = x^3 + 3x^2 - 45x + 81$ $y = x^3 + 3x^2 - 45x + 81$ $y' = 3x^2 + 6x - 45$ y'' = 6x + 6 = 0 6x = -6 $\boxed{x = -1}$ Inflection number

267. Answer is D.

What are the x-coordinates of the points of inflection on the graph of the function $f(x) = 3x^{4} - 4x^{3} + 6$ $f'(x) = 12x^{3} - 12x^{2}$ $f''(x) = 36x^{2} - 24x = 0$ 12x(3x - 2) = 0 $\boxed{x = 0} \quad \boxed{x = \frac{2}{3}} \quad \leftarrow x\text{-coordinates of the points of inflection}$ Given the function $h(x) = 6x^3 - 8x^2 + 2$, at what x value(s) is/are the inflection point(s)?

 $h(x) = 6x^{3} - 8x^{2} + 2$ $h'(x) = 18x^{2} - 16x$ h''(x) = 36x - 16 = 036x = 16 $x = \frac{4}{9}$

Inflection number

269. Answer is C.

How many inflection points does $3x^4 - 5x^3 - 9x + 2$ have?

$y = 3x^4 - 5x^3 - 9x + 2$	Interval	$-\infty < x < 0$	$0 < x < \frac{5}{6}$	$\frac{5}{6} < x < \infty$
$y' = 12x^3 - 15x^2 - 9$ $y'' = 36x^2 - 30x = 0 \implies \Rightarrow$		<i>y</i> "(-1) = +	$y''(\frac{1}{2}) = -$	y''(1) = +
$y = 50x = 50x = 0 \qquad \implies \qquad \qquad$	y	concave up	concave down	concave up
$\frac{1}{x=0} x=\frac{5}{6}$	Both $x = 0$ and $x = \frac{5}{6}$ have changes in concavity so			
$x = 0 \mid x = \frac{1}{6}$	there are 2 inflection points			

270. Answer is B.

What is the x-coordinate of the point of inflection on the graph of $y = \frac{2}{3}x^3 - 2x^2 + 7$ $y = \frac{2}{3}x^3 - 2x^2 + 7$ $y' = 2x^2 - 4x$ y'' = 4x - 4 = 0 4x = 4 $\boxed{x = 1}$

271. Answer is B.

What is the *x*-coordinate of the point of inflection for the graph of $y = x^3 + 3x^2 - 1$

 $y = x^{3} + 3x^{2} - 1$ $y' = 3x^{2} + 6x$ y'' = 6x + 6 = 06x = -6x = -1

A particle moves along the x-axis so that its position at time t is $x(t) = 2t^2 - 7t + 3$ (x in cm and t in seconds). What is the velocity (in cm/sec) at time t = 2 seconds?

$$x(t) = 2t^{2} - 7t + 3$$

$$v(t) = x'(t) = 4t - 7$$

$$v(2) = 4(2) - 7 = 1 \text{ cm/sec}$$

273. Answer is C.

Difficulty = 0.76 U

A particle moves along the x-axis according to the function $x(t) = t^2 - 4t + 3$, where x (meters) is the position of the particle at time t (seconds). At what time t does the particle have a velocity of 6 m/s

 $x(t) = t^{2} - 4t + 3$ v(t) = 2t - 4 = 62t = 10t = 5

274. Answer is D.

Difficulty = 0.75 U

A particle moves along the x-axis so that its position at time t is $x(t) = 3t^3 + 2t^2 + 7$ where x is in meters and t is in seconds. Find the velocity at t = 2 seconds.

 $x(t) = 3t^{3} + 2t^{2} + 7$ $v(t) = 9t^{2} + 4t$ $v(2) = 9(2)^{2} + 4(2) = 36 + 8 = 44 \text{ m/s}$

275. Answer is D.

Difficulty = 0.71 U

A particle moves along the x-axis according to the position function $x(t) = 2t^3 - 6t^2 + 9$ where x is in meters and t is in seconds. Find the value(s) of t when the particle is stationary.

 $x(t) = 2t^{3} - 6t^{2} + 9$ $v(t) = 6t^{2} - 12t = 0 \quad \leftarrow \text{ particle is stationary}$ $\frac{6t(t-2) = 0}{t=0 \quad t=2}$

A particle moves along the x-axis so that its position at time t is $x(t) = t^2 - 2t + 5$ where x is in centimeters and t is in seconds. At what time is the particle's velocity 4 cm/s

$$x(t) = t^{2} - 2t + 5$$

$$v(t) = 2t - 2 = 4 \quad \leftarrow \text{ velocity } 4 \ cm/s$$

$$2t = 6$$

$$t = 3$$

277. Answer is B.

Difficulty = 0.69 U

An object moves along the x-axis so that its position at time t is $x = t^2 - 3t + 5$ where x is in meters and t is in seconds. At what time(s) is its velocity 5 m/s

 $x(t) = t^{2} - 3t + 5$ $v(t) = 2t - 3 = 5 \quad \leftarrow \text{ velocity } 5 \text{ } m/s$ 2t = 8t = 4

278. Answer is B.

Difficulty = 0.51 H

A particle moves along the x-axis according to the position function $x(t) = 2t^3 - 6t + 1$ where x is in meters and t is in seconds. For what values of t is the particle moving to the right?

 $x(t) = 2t^3 - 6t + 1$ $v(t) = 6t^2 - 6$ $v(t) = 6t^2 - 6 = 0$ Parabola opening up with $6t^2 = 6$ Parabola opening $t = \pm 1$ $t^2 = 1$ moving to the *right* means v(t) > 0 $t = \pm 1$ x < -1 or x > 1

279. Answer is D.

The position of an object moving in a straight path is given by $x(t) = kt^2 + 12t$, where x is in meters and t is in seconds. Find the value of k if the velocity of the object is 4 m/s when t = 2 seconds.

 $x(t) = kt^{2} + 12t$ v(t) = 2kt + 12 $v(2) = 2k(2) + 12 = 4 \quad \leftarrow \text{ velocity of the object is } 4 \text{ m/s}$ 4k = -8 $\boxed{k = -2}$

A particle moves along the x-axis according to the position function $x(t) = t^3 - 4t^2 + 3$ (x in meters, t in seconds). Determine the velocity in m/s at t = -2

$$x(t) = t^{3} - 4t^{2} + 3$$

$$v(t) = 3t^{2} - 8t$$

$$v(-2) = 3(-2)^{2} - 8(-2) = 12 + 16 = 28 \text{ m/sec}$$

281. Answer is C.

A particle moves along the x-axis according to the position function $x(t) = t^2 - t$ (x in cm, t in sec). Determine the time t (in sec) when the velocity is 12 cm/s

$$x(t) = t^{2} - t$$

$$v(t) = 2t - 1 = 12 \quad \leftarrow \text{ velocity is } 12 \text{ cm/s}$$

$$2t - 1 = 12$$

$$2t = 13$$

$$\boxed{t = 6.5}$$

282. Answer is C.

As a particle moves along the x-axis, its distance from the origin is given by $x(t) = 3t^2 - 4t + 10$ where x is in meters and t is in seconds. At what time is the velocity 14 m/s

 $x(t) = 3t^{2} - 4t + 10$ $v(t) = 6t - 4 = 14 \quad \leftarrow \text{ velocity } 14 \text{ } m/s$ 6t = 18 $\boxed{t = 3}$

283. Answer is A.

An object moves so that its distance in metres, at time t seconds, is given by f(t). What does f'(2) represent?

Position function $\rightarrow f(t)$ \leftarrow position at any time tVelocity function $\rightarrow f'(x)$ \leftarrow velocity at any time tVelocity at $t = 2 \rightarrow f'(2)$

284. Answer is B.

As a particle moves along the x-axis, its distance from the origin is given by $x(t) = t^2 - 6t + 5$ At what time t (in seconds) is the velocity of the particle zero?

 $x(t) = t^{2} - 6t + 5$ $v(t) = 2t - 6 = 0 \quad \leftarrow \text{ velocity of the particle zero}$ 2t = 6t = 3

285. Answer is C.

A particle moves along a line according to the distance function $s(t) = 2t^3 - 21t^2 + 60t + 13$ During the time interval from t = 1 to t = 12, how many times does the paticle reverse its direction of movement?

$$s(t) = 2t^{3} - 21t^{2} + 60t + 13$$

$$v(t) = 6t^{2} - 42t + 60 = 0$$

$$t^{2} - 7t + 10 = 0$$

$$(t - 2)(t - 5) = 0$$

$$\overline{t = 2} \quad t = 5 \quad \leftarrow \text{Twice in interval from } t = 1 \text{ to } t = 12$$

286. Answer is E.

Difficulty = 0.67

A particle moves along the x-axis so that at time $t \ge 0$ its position is given by $x(t) = 2t^3 - 21t^2 + 72t - 5$ At what time t is the particle at rest? $x'(t) = 6t^2 - 42t + 72$ $x'(t) = 6t^2 - 42t + 72 = 0 \leftarrow \text{at rest}$ $t^2 - 7t + 12 = 0$ (t-3)(t-4) = 0 $\overline{t=3}$ $\overline{t=4}$

287. Answer is B.

The position of a particle moving along a straight line at any time t is given by $s(t) = t^2 + 4t + 4$ What is the acceleration of the particle when t = 4

$$s(t) = t^{2} + 4t + 4$$

$$v(t) = s'(t) = 2t + 4$$

$$a(t) = s''(t) = 2$$

$$a(4) = s''(4) = 2$$

288. Answer is C.

A particle moves along the x-axis so that at any time t its position is given by $x(t) = te^{-2t}$ For what values of t is the particle at rest?

$$x(t) = te^{-2t}$$

$$v(t) = t(-2e^{-2t}) + e^{-2t} = 0$$

$$e^{-2t}(-2t+1) = 0$$

$$e^{-2t} \neq 0 \qquad -2t+1 = 0$$

$$\frac{1}{2} = t \qquad \leftarrow \text{ particle at rest when } t = \frac{1}{2}$$

A particle moves along the x-axis so that at any time $t \ge 0$ its position is given by $x(t) = t^3 - 3t^2 - 9t + 1$ For what values of t is the particle at rest

$$x(t) = t^{3} - 3t^{2} - 9t + 1$$

$$v(t) = 3t^{2} - 6t - 9 = 0 \quad \leftarrow \text{ at rest}$$

$$t^{2} - 2t - 3 = 0$$

$$(t - 3)(t + 1) = 0$$

$$\boxed{t = 3} \quad t = -1$$

290. Answer is C.

A particle starts at time t = 0 and moves along a number line so that its position, at time $t \ge 0$ is given by $x(t) = (t-2)^3(t-6)$ The particle is *moving to the right* for

		x(t) > 0		
$x'(t) = (t-2)^{3} + (t-6)3(t-2)^{2}$ $x'(t) = (t-2)^{2} [(t-2)+3(t-6)]$	$\underbrace{cn=2}_{\downarrow} \qquad \underbrace{cn=5}_{\downarrow}$			
$x'(t) = (t-2)^{2} [t-2+3t-18]$	$\frac{interval}{x'(t)}$	0 < t < 2 x'(1) = -16	2 < t < 5 x'(3) = -8	$\frac{t > 5}{x'(6) = 64}$
$x'(t) = (t-2)^2 [4t-20]$	direction	$\frac{x(1) = -10}{left}$	x(3) = -6 <i>left</i>	$\frac{x(0) = 04}{right}$
$x'(t) = 4(t-2)^{2}(t-5) = 0$ critical $\rightarrow t=2 t=5$		lejt		<u></u>

291. Answer is C.

The formula $x(t) = \ln t + \frac{t^2}{18} + 1$ gives the position of an object moving along the *x*-axis during the time interval $1 \le t \le 5$ At the instant when the acceleration of the object is zero, the velocity is

$$x'(t) = v(t) = \frac{1}{t} + \frac{t}{9}$$

$$v'(t) = a(t) = \frac{-1}{t^{2}} + \frac{1}{9} = 0$$

$$\frac{1}{9} = \frac{1}{t^{2}}$$

$$t^{2} = 9$$

$$1 \le t \le 5 \rightarrow t = 3$$

$$v(t) = \frac{1}{t} + \frac{t}{9}$$

$$v(3) = \frac{1}{3} + \frac{3}{9} = \boxed{\frac{2}{3}}$$

292. Answer is A.

Which of the following must be true about a particle that starts at t = 0 and moves along a number line if its position at time t is given by $s(t) = (t-2)^3(t-6)$ I. The particle is moving to the right for t > 5II. The particle is at rest at t = 2 and t = 6III. The particle changes direction at t = 2 $s(t) = (t-2)^3(t-6)$

$$s'(t) = (t-2)^{3} + (t-6)3(t-2)^{2}$$

= $(t-2)^{2}[(t-2)+3(t-6)]$
 $v(t) = (t-2)^{2}[t-2+3t-18]$
= $(t-2)^{2}[4t-20] = 4(t-2)^{2}[t-5]$

293. Answer is D.

A particle starts at time t = 0 and moves along a number line so that its position, at time $t \ge 0$, is given by $x(t) = (t-2)(t-6)^3$ The particle is moving to the left for

$$x'(t) = (t-2)3(t-6)^{2} + (t-6)^{3}$$

$$x'(t) = (t-6)^{2} [3(t-2) + (t-6)]$$

$$x'(t) = (t-6)^{2} [3t-6+t-6]$$

$$x'(t) = (t-6)^{2} [4t-12]$$

$$x'(t) = 4(t-6)^{2} [t-3]$$

Sketch graph

294. Answer is E.

The position function of a moving particle on the x-axis is given as $s(t) = t^3 + t^2 - 8t$ for $0 \le t \le 10$ For what values of t is the particle moving to the right ?

v(t) > 0

 $s(t) = t^{3} + t^{2} - 8t$ $v(t) = 3t^{2} + 2t - 8$ v(t) = (t+2)(3t-4) $\overline{t = -2 \quad t = \frac{4}{3}}$

If $t > \frac{4}{3}$ then the velocity is *positive* and the particle is moving to the *right* !

A particle is moving along the *x*-axis. Its position at time t > 0 is e^{2-t} What is its acceleration when t = 2

$$s(t) = e^{2-t}$$

$$v(t) = e^{2-t}(-1) = -e^{2-t}$$

$$a(t) = e^{2-t}$$

$$a(2) = e^{2-2} = e^{0} = 1$$

296. Answer is C.

297. A particle moves along the x-axis so that its position at time t is given by $x(t) = 4t^3 - 33t^2 + 30t + 12$, where t is measured in seconds and x is measured in meters. a) Determine the velocity, in m/s, of the particle at time t = 2 seconds b) Determine the time(s), in seconds, when the particle is stationary a) $x(t) = 4t^3 - 33t^2 + 30t + 12$ $v(t) = 12t^2 - 66t + 30$ $v(2) = 12(2)^2 - 66(2) + 30 = \boxed{-54 m / \text{sec}}$ b) $v(t) = 12t^2 - 66t + 30 = 0 \quad \leftarrow \text{ particle is stationary}$ $2t^2 - 11t + 5 = 0$ (2t - 1)(t - 5) = 0 $\boxed{t = \frac{1}{2}}$ $\boxed{t = 5}$

298. A particle moves along the x-axis such that its distance from the origin is given by $x(t) = 2t^2 + 60t$ where x is in centimeters and t is in seconds. When the particle's velocity is 72 cm/sec, determine its distance x(t) from the origin.

$x(t) = 2t^2 + 60t$	$x(t) = 2t^2 + 60t$		
v(t) = 4t + 60 = 72	$x(3) = 2(3)^2 + 60(3) = 18 + 180 = 198$		
4t = 12	Distance $x(t)$ from the origin when its velocity is 72 cm/sec		
<i>t</i> = 3	is 198 cm to the <i>right</i> of the origin.		

299.

A particle moves along the x-axis so that its position at time t is $x(t) = 4t^3 - 21t^2 + 30t$

where t is measured in seconds, and x is measured in meters.

a) Determine the time(s) when the particle is stopped.

b) Determine when the particle is moving to the left

a)
$$x(t) = 4t^3 - 21t^2 + 30t$$

 $v(t) = 12t^2 - 42t + 30 = 0 \quad \leftarrow \text{ particle stopped}$
 $2t^2 - 7t + 5 = 0$
 $(2t - 5)(t - 1) = 0$
 $\overline{t = \frac{5}{2}} \quad \overline{t = 1}$
b) $v(t) = 12t^2 - 42t + 30 \quad \leftarrow \text{ parabola opening up with zero's of 1 and 2.5}$
 $12t^2 - 42t + 30 < 0 \quad \leftarrow v(t) \text{ negative (moving left)} \quad 1 < t < \frac{5}{2}$

Solution:

... particle is moving left when

$$1 < t < \frac{5}{2}$$
 $\leftarrow \frac{1}{2}$ mark

300. A particle moves along the x-axis so that its position at time t is $x(t) = 2t^3 - 5t^2 - 4t + 3$ (x in cm and t in seconds.) a) At what time(s) is the particle stationary? **b**) At what time(s) is the particle moving to the left ? $x(t) = 2t^3 - 5t^2 - 4t + 3$ a) $6t^2 - 10t - 4 < 0 \leftarrow \text{moving left}$ $v(t) = x'(t) = 6t^2 - 10t - 4$ Sketch parabola opening up with zeros $v(t) = 6t^2 - 10t - 4 = 0 \leftarrow \text{stationary}$ $t = -\frac{1}{3}$, 2 and parabola is negative when $3t^2 - 5t - 2 = 0$ $-\frac{1}{3} < t < 2$ (3t+1)(t-2) = 0 $t = -\frac{1}{3}$ t = 2

301. A particle moves along the x-axis so that its position at time t is $x(t) = 2t^3 - 9t^2 + 12t$ (x in cm and t in seconds)

- *a*) Determine the time(s) when the particle is stopped
- **b**) Determine the velocity of the particle at time t = 3 seconds

a)
$$f(x) = x^3 - 3x + 5$$

 $f'(x) = 3x^2 - 3$
 $f'(2) = 3(2)^2 - 3 = 9 \leftarrow \text{slope}$
 $f(2) = 2^3 - 3(2) + 5 = 7$
point of tangency (2, 7)
b) $f'(x) = 3x^2 - 3 = 0 \leftarrow \text{slope} = 0$
 $3x^2 = 3$
 $x^2 = 1$
 $x = \pm 1$

302. A particle moves along the x-axis so that its position at time t is $x(t) = 2t^3 - 9t^2 + 12t$ (x in cm and t in seconds)

- *a*) Determine the time(s) when the particle is stopped
- b) Determine the velocity of the particle at time t = 3 seconds

a) $x(t) = 2t^3 - 9t^2 + 12t$ $v(t) = x'(t) = 6t^2 - 18t + 12 \rightarrow$ $v(t) = 6t^2 - 18t + 12 = 0 \leftarrow \text{stopped}$ $t^2 - 3t + 2 = 0$ (t - 1)(t - 2) = 0 $\overline{t = 1}$ $\overline{t = 2}$

b) Velocity of the particle at t = 3 seconds $v(t) = 6t^2 - 18t + 12$ $v(3) = 6(3)^2 - 18(3) + 12$ $v(3) = 12 \ cm / sec$

303. A particle moves along the x-axis so that its position at time t is $x(t) = 4t^3 - 21t^2 + 18t + 3$ where t is measured in seconds and x is measured in meters.

- *a*) Determine an equation for the velocity function.
- **b**) Determine the velocity at time t = 2
- *c*) Determine the time(s) when the particle is stationary.

a)
$$x(t) = 4t^3 - 21t^2 + 18t + 3$$

 $v(t) = 12t^2 - 42t + 18$ \leftarrow first derivative
b) $v(2) = 12t^2 - 42t + 18 = 12(2)^2 - 42(2) + 18 = 18 \text{ m/s}$
c) $v(t) = 12t^2 - 42t + 18 = 0 \leftarrow$ particle is stationary
 $2t^2 - 7t + 3 = 0$
 $(2t - 1)(t - 3) = 0$
 $t = \frac{1}{2}$ $t = 3$

304. A particle moves along the x-axis in such a way that its position at time t is given by $x(t) = 3t^4 - 16t^3 + 24t^2$ for $-5 \le t \le 5$

- a) Determine the velocity and acceleration of the particle at time t
- **b**) At what values of **t** is the particle at rest ?
- c) At what values of t does the particle change direction ?
- *d*) What is the velocity when the acceleration is first zero?

(a)
$$v = \frac{dx}{dt} = 12t^3 - 48t^2 + 48t = 12t(t^2 - 4t + 4) = 12t(t - 2)^2$$

 $a = \frac{dv}{dt} = 36t^2 - 96t + 48 = 12(3t^2 - 8t + 4) = 12(3t - 2)(t - 2)$

- (b) The particle is at rest when v = 0. This occurs when t = 0 and t = 2.
- (c) The particle changes direction at t = 0 only.

(d)
$$a = 0$$
 when $t = \frac{2}{3}$ and $t = 2$. The acceleration is first zero at $t = \frac{2}{3}$.
 $v\left(\frac{2}{3}\right) = 12\left(\frac{2}{3}\right)\left(-\frac{4}{3}\right)^2 = \frac{128}{9}$

305. A particle moves along the *x*-axis in such a way that its position at time *t* for $t \ge 0$ is given

by
$$x(t) = \frac{1}{3}t^3 - 3t^2 + 8t$$

- a) Show that at time t = 0, the particle is moving to the right.
- b) Find all values of t for which the particle is moving to the left.
- c) What is the position of the particle at time t = 3
- d) When t = 3, what is the total distance the particle has traveled ?

(a)
$$v = \frac{dx}{dt} = t^2 - 6t + 8$$

v(0) = 8 > 0 and so the particle is moving to the right at t = 0.

- (b) The particle is moving to the left when $v(t) = t^2 6t + 8 = (t-4)(t-2) < 0$. Therefore the particle moves to the left for 2 < t < 4.
- (c) At time t = 3, $x = \frac{1}{3}(3)^3 3(3)^2 + 8(3) = 6$.
- (d) The particle changes direction at t = 2.

$$x(0) = 0$$

$$x(2) = \frac{1}{3}(2)^{3} - 3(2)^{2} + 8(2) = \frac{20}{3}$$

$$x(3) = 6$$

Distance =
$$(x(2) - x(0)) + (x(2) - x(3)) = \frac{20}{3} + \frac{2}{3} = \frac{22}{3}$$