Name: \qquad

1. Find the derivative of $f(x)=4 x^{2}+7 x-5$
A. $4 x+7$
B. $4 x+7$
C. $8 x+7$
D. $8 x^{2}+7 x$
E. none of these
2. Given $f(x)=3 x^{2}-4 x+5$ find $f^{\prime}(x)$
A. $5 x+1$
B. $6 x+1$
C. $5 x-4$
D. $6 x-4$
E. none of these
3. If $y=3 x^{3}-4 x^{2}+5$ find $\frac{d y}{d x}$
A. $3 x^{2}-4 x$
B. $3 x^{2}-4 x+5$
C. $9 x^{2}-8 x$
D. $9 x^{2}-8 x+5$
E. none of these
4. Find $\frac{d y}{d x}$ if $y=-3 x^{2}+6 x$
A. $-6 x+6$
B. $9 x+6$
C. $-x+7$
D. $-6 x$
E. none of these
5. Find $f^{\prime}(x)$ if $f(x)=3$
A. 0
B. 1
C. 3
D. $\frac{3}{x}$
E. none of these
6. Given that r is any real number, determine $\frac{d}{d x}\left(x^{r}\right)$
A. $r x^{r-1}$
B. $r x^{r+1}$
C. $(r-1) x^{r}$
D. $(r+1) x^{r}$
E. none of these
7. If $f(x)=\frac{3}{x}$ then $f^{\prime}(x)=$
A. $-\frac{3}{x^{2}}$
B. $\frac{3}{x}$
C. $-3 x$
D. $3 x$
E. none of these
8. Find $\frac{d y}{d x}$ if $y=2 \sqrt{x}$
A. $\frac{1}{\sqrt{x}}$
B. $-\sqrt{x}$
C. $\frac{1}{2 \sqrt{x}}$
D. $-\frac{1}{2} x$
E. none of these
9. If $f(x)=\sqrt{x}$ determine the value of $f^{\prime}(x)$ at $(\mathbf{1 6}, 4)$
A. $-\frac{1}{4}$
B. $-\frac{1}{\mathbf{8}}$
C. $\frac{\mathbf{1}}{\mathbf{8}}$
D. $\frac{1}{4}$
E. none of these
10. If $f(x)=k \sqrt{x}$ determine the value of the constant k so that $f^{\prime}(4)=\mathbf{6}$
A. $k=3$
B. $k=6$
C. $k=12$
D. $k=24$
E. none of these
11. For the curve $\boldsymbol{y}=\boldsymbol{x}^{\boldsymbol{k}}(\boldsymbol{k} \neq \mathbf{0})$, the slope of the tangent is equal to $\mathbf{1 6} \boldsymbol{k}$ when $\boldsymbol{x}=\mathbf{2}$ Determine the value of \boldsymbol{k}
A. 3
B. 4
C. 5
D. 8
E. none of these
12. Given $f(x)=\frac{\mathbf{5}}{x^{2}}$ determine $f^{\prime}(x)$
A. $-\frac{10}{x}$
B. $-\frac{10}{x^{3}}$
C. $\frac{3}{x^{3}}$
D. $\frac{5}{2 x}$
E. none of these
13. Given $y=\frac{1}{x^{3}}$ determine $\frac{d y}{d x}$
A. $-\frac{3}{x^{2}}$
B. $-\frac{3}{x^{4}}$
C. $\frac{1}{3 x^{2}}$
D. $\frac{1}{3 \boldsymbol{x}^{4}}$
E. none of these
14. Find y^{\prime} if $y=x^{\frac{3}{2}}$
A. $\frac{2}{3} x^{\frac{1}{2}}$
B. $\frac{3}{2} x^{\frac{1}{2}}$
C. $\frac{2}{3} x^{\frac{5}{2}}$
D. $\frac{3}{2} x^{\frac{5}{2}}$
E. none of these
15. Which of the following represents the slope of the tangent to $\boldsymbol{f}(\boldsymbol{x})$ at $\boldsymbol{x}=\mathbf{2}$
A. $f^{\prime}(2)$
B. $f(2)$
C. $f^{\prime}(x)=0$
D. $f^{\prime}(x)=2$
E. none of these
16.

Given $f(x)=\frac{\mathbf{1}}{\boldsymbol{x}}$ determine $f^{\prime}(x)$
A. $-\frac{1}{x^{2}}$
B. $\frac{1}{x^{2}}$
C. $-\frac{1}{x}$
D. $\frac{1}{x}$
E. none of these
17. If $y=7$ determine $\frac{d y}{d x}$
A. 0
B. 1
C. 7
D. $\frac{7}{x}$
E. none of these
18. Evaluate the derivative of the function $\boldsymbol{f}(\boldsymbol{x})=\mathbf{3} \boldsymbol{x}^{2}-\mathbf{2 x}-\mathbf{1}$ at the point where $\boldsymbol{x}=\mathbf{0}$
A. ${ }_{-2}$
B. -1
C. $\frac{1}{3}$
D. 1
E. none of these
19. Evaluate the derivative of $f(x)=2 x^{2}-\mathbf{3 x + 2}$ at the point where $\boldsymbol{x}=\mathbf{2}$
A. $\frac{3}{4}$
B. $\frac{5}{4}$
C. 4
D. 5
E. none of these
20. Given $f(x)=(2 x-3)^{2}$ then $f^{\prime}(x)=$
A. $4 x$
B. $8 x$
C. $4 x-6$
D. $8 x-12$
E. none of these
21. Given the function $f(x)=\sqrt{2}$ determine $f^{\prime}(x)$
A. 0
B. $\sqrt{2}$
C. $\frac{1}{2 \sqrt{2}}$
D. $\frac{1}{\sqrt{2}}$
E. none of these
22. If $f(x)=\mathbf{6} g(x)$ then $f^{\prime}(x)$ equals
A. $6 g^{\prime}(x)$
B. $g^{\prime}(x)$
C. $g^{\prime}(6)$
D. 6
E. none of these
23. For what condition is $\boldsymbol{f}(\boldsymbol{x})$ increasing ?
A. $f(x)>0$
B. $f(x)<0$
C. $f^{\prime}(x)>0$
D. $f^{\prime}(x)<0$
E. none of these
24. Find \boldsymbol{k} such that the function $f(x)=k x^{2}+\mathbf{1 2 x}-\mathbf{4}$ has a critical point at $x=\mathbf{4}$
A. $k=-6$
B. $k=-\frac{3}{2}$
C. $k=\frac{3}{2}$
D. $k=6$
E. none of these
25. Determine all values of \boldsymbol{x} such that the function $f(x)=x^{3}-\mathbf{3} x^{2}+\mathbf{5}$ is decreasing.
A. $x<2$
B. $x>2$
C. $0<x<2$
D. $x<0$ or $x>2$
26. Find the \boldsymbol{x}-value of the point on the graph of $\boldsymbol{y}=\boldsymbol{x}^{2}-\boldsymbol{x}$ where the slope of the tangent is $\mathbf{2}$
A. 0.5
B. $\mathbf{1 . 5}$
C. 2
D. 3
E. none of these
27. Find all values of \boldsymbol{x} such that the function $\boldsymbol{f}(\boldsymbol{x})=\mathbf{2} \boldsymbol{x}^{\mathbf{3}}-\mathbf{3} \boldsymbol{x}^{2}$ is increasing
A. $x<1$
B. $x>0$
C. $0<x<1$
D. $x<0$ or $x>1$
28. Give all values of x where the function $f(x)=x^{3}-3 x+4$ is increasing
A. $x>1$
B. $x<-1$
C. $-1<x<1$
D. $x<-1$ or $x>1$
29. At which of the following values of \boldsymbol{x} is the function $\boldsymbol{g}(\boldsymbol{x})=\boldsymbol{x}^{3}-\mathbf{4} \boldsymbol{x}^{2}$ decreasing ?
A. $x=-3$
B. $x=-1$
C. $x=2$
D. $x=4$
E. none of these
30. If $f^{\prime}(x)=-6 \boldsymbol{x}$ determine all values of \boldsymbol{x} such that $\boldsymbol{f}(\boldsymbol{x})$ is decreasing
A. $\boldsymbol{x}>0$
B. $\boldsymbol{x}<\mathbf{0}$
C. $-6<x<0$
D. all real numbers
31. Determine the x-values of the critical points for the function $f(x)=x^{3}+\mathbf{3} x^{2}-\mathbf{2 4} x$
A. $x=-4, x=2$
B. $x=4, x=-2$
C. $x=0, x=3.62, x=-6.62$
D. $x=0, x=3.62, x=6.62$
E. none of these
32. Determine all values of x such that the function $f(x)=x^{4}-\mathbf{1 8} \boldsymbol{x}^{2}+\mathbf{8}$ is decreasing.
33. Determine all values of \boldsymbol{x} such that the function $f(x)=x^{4}-8 x^{2}-9$ is increasing.
34. a) Determine the x values of the critical points of $f(x)=x^{4}-8 x^{2}$
b) For what values of x is $f(x)=x^{4}-8 x^{2}$ decreasing
35. Given the function $f(x)=2 x^{3}-\mathbf{3} x^{2}-\mathbf{1 2 x}+4$
a) determine the coordinates of the critical points of $f(x)$
b) determine where $\boldsymbol{f}(\boldsymbol{x})$ is increasing
36. For the function $f(x)=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-6 x$, find the x-coordinate of the critical point where the local minimum point occurs.
A. $\mathbf{- 3}$
B. -2
C. 2
D. 3
E. none of these
37. Find the minimum value of the function $f(x)=2 x^{2}-12 x+6$
A. $\mathbf{- 2 4}$
B. $\mathbf{- 1 2}$
C. 3
D. 6
E. none of these
38. Determine the minimum value of the function $f(x)=\mathbf{3} \boldsymbol{x}^{2}-\mathbf{1 2 x}+\mathbf{1 3}$
A. 0
B. 1
C. 2
D. 13
E. none of these
39. Determine the minimum value of the function $g(x)=2 x^{2}-\mathbf{1 2 x}+\mathbf{2 5}$
A. 0
B. 3
C. 7
D. 25
E. none of these
40. Determine the minimum value of the function $y=\mathbf{3} \boldsymbol{x}^{2}-\mathbf{2 4} x-7$
A. -79
B. $\mathbf{- 5 5}$
C. 4
D. no minimum value
41. Find the maximum value of the function $y=-13-6 x-x^{2}$
A. $\mathbf{- 4 0}$
B. -13
C. -4
D. -3
E. none of these
42. If $\boldsymbol{y}=\mathbf{2 a x}+\boldsymbol{b} \boldsymbol{x}^{\mathbf{2}}$ and \boldsymbol{a} and \boldsymbol{b} are positive constants, determine the minimum value of \boldsymbol{y}
A. $-\frac{a}{b}$
B. $\frac{a}{b}$
C. $-\frac{a^{2}}{b}$
D. $-\frac{3 a^{2}}{b}$
E. none of these
43. Determine the maximum value of the function $f(x)=-2 x^{2}-x+6$
A. $\mathbf{- 0 . 2 5}$
B. 0
C. $\mathbf{5 . 6 2 5}$
D. 6.125
E. none of these
44. Find the minimum value of the function $f(x)=2 x^{2}-12 x+25$
A. 0
B. 3
C. 7
D. 25
E. none of these
45. If $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{4}+\boldsymbol{k} \boldsymbol{x}^{2}$ has a minimum at $\boldsymbol{x}=\mathbf{1}$, then determine the value of the constant \boldsymbol{k}
A. ${ }_{-2}$
B. $-\frac{1}{2}$
C. $\frac{1}{2}$
D. 2
E. none of these
46. Determine the maximum value of the function $f(x)=2-18 x-3 x^{2}$
A. $\mathbf{- 7 9}$
B. $-\mathbf{3}$
C. 3
D. 29
E. none of these
47. What is the maximum value of the function $f(x)=4+8 x-x^{2}$
A. -4
B. 4
C. 12
D. 20
E. none of these
48. Find the slope of the line tangent to the graph of $f(x)=x^{2}+\mathbf{3}$ at the point where $x=-\mathbf{1}$
A. $\mathbf{- 2}$
B. 1
C. 2
D. 4
E. none of these
49. Find the slope of the tangent to $y=x^{3}-2 x^{2}+6$ at $(2,6)$
A. 4
B. 6
C. 10
D. 20
E. none of these
50. Find the slope of the line tangent to the graph of $\boldsymbol{y}=\boldsymbol{x}^{3}-\mathbf{4} \boldsymbol{x}^{2}+\mathbf{2}$ at the point where $\boldsymbol{x}=\mathbf{2}$
A. $\mathbf{- 1 0}$
B. -6
C. -4
D. -2
E. none of these
51. If $\boldsymbol{y}=-\mathbf{3} \boldsymbol{x}+\mathbf{1}$ is tangent to the curve $\boldsymbol{f}(\boldsymbol{x})$ at $\boldsymbol{x}=\boldsymbol{a}$ which must be true?
A. $f(a)=-3$
B. $f(a)=1$
C. $f^{\prime}(a)=-3$
D. $f^{\prime}(a)=1$
E. none of these
52. Given the function $f(x)=3 x^{2}-\mathbf{4} \boldsymbol{x}+\mathbf{3}$ for what value(s) of \boldsymbol{x} is the slope of the tangent line equal to 2
A. $\frac{\mathbf{2}}{3}$
B. 1
C. 8
D. 1 and $\frac{1}{3}$
E. none of these
53. Determine the slope of the line tangent to $\boldsymbol{y}=\frac{\mathbf{6}}{\boldsymbol{x}}$ at (2,3)
A. ${ }_{-3}$
B. -2
C. $-\frac{3}{2}$
D. $-\frac{2}{3}$
E. none of these
54. Find the point on $\boldsymbol{y}=\mathbf{2} \boldsymbol{x}^{\mathbf{2}}+\mathbf{6} \boldsymbol{x}-\mathbf{1}$ where the slope of the tangent line is $\mathbf{2}$
A. $(-1,-5)$
B. $(-1,2)$
C. $(1,7)$
D. $(2,19)$
E. none of these
55.

Determine the slope of the line tangent to the graph of $y=\frac{1}{x}$ at $x=4$
A. -16
B. $-\frac{1}{16}$
C. $\frac{1}{16}$
D. 16
E. none of these
56. Find an equation of the line tangent to the graph of $\boldsymbol{y}=\boldsymbol{x}^{3}-\mathbf{3} \boldsymbol{x}^{2}+\mathbf{3 x}+\mathbf{2}$ at $(\mathbf{0}, \mathbf{2})$
A. $y=-3 x+2$
B. $y=-2 x+2$
C. $y=2 x+2$
D. $y=3 x+2$
E. none of these
57. At what point on the curve $\boldsymbol{y}=\boldsymbol{x}^{2}-4$ is the tangent parallel to the line $6 x+y=4$
A. $(-3,22)$
B. $(-3,5)$
C. $(3,-14)$
D. $(\mathbf{3}, \mathbf{5})$
E. none of these
58. Determine the slope of the line tangent to the graph of $f(x)=\sqrt{x}$ at $\boldsymbol{x}=\mathbf{9}$
A. $\frac{1}{6}$
B. $\frac{\mathbf{1}}{\mathbf{3}}$
C. $\frac{3}{2}$
D. 3
E. none of these
59. The line $\boldsymbol{y}=\mathbf{- 4 x + 1 8}$ is tangent to the parabola $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b x}$ at the point where $\boldsymbol{x}=\mathbf{3}$ If the parabola has a critical point at $\boldsymbol{x}=\mathbf{2}$ determine the value of \boldsymbol{a}
A. -4
B. $\mathbf{- 2}$
C. $\mathbf{- 1}$
D. 2
E. none of these
60. What are the coordinates of the point on the graph of $y=\sqrt{x}$ where the slope of the tangent is $\frac{\mathbf{1}}{8}$
A. $\left(\frac{1}{16}, \frac{1}{4}\right)$
B. $\left(\frac{1}{16}, 4\right)$
C. $\left(16, \frac{1}{8}\right)$
D.
E.
none of these
61. Determine the slope of the line tangent to the graph of $\boldsymbol{y}=\boldsymbol{x}^{3}-\boldsymbol{x}^{2}$ at the point where $\boldsymbol{x}=\mathbf{2}$
A. 2
B. 4
C. 8
D. 10
E. none of these
62. Determine the slope of the tangent line to $f(x)=-\frac{2}{x}$ at the point where $x=2$
A. ${ }_{-2}$
B. $-\frac{1}{2}$
C. $\frac{1}{2}$
D. 2
E. none of these
63. What is the slope of the tangent line to the graph of $\boldsymbol{y}=-\boldsymbol{x}^{2}+\mathbf{2 x}-\mathbf{3}$ at the point $(2,-3)$
A. $\mathbf{- 1 8}$
B. -3
C. $\mathbf{- 2}$
D. 8
E. none of these
64. What is the slope of the tangent line to the function $\boldsymbol{y}=\mathbf{3}-\boldsymbol{x}$
A. -1
B. 0
C. 2
D. 3
E. none of these
65. The equation of the normal line to the curve $\boldsymbol{y}=\boldsymbol{x}^{4}+\mathbf{3} \boldsymbol{x}^{3}+\mathbf{2}$ at the point where $\boldsymbol{x}=\mathbf{0}$ is
A. $y=x$
B. $y=13 x$
C. $y=0$
D. $y=x+2$
E. $x=0$
66. The line \mathbf{L} is perpendicular to the parabola $\boldsymbol{y}=\boldsymbol{k} \boldsymbol{x}^{2}$ at the point $(\mathbf{1}, \mathbf{5})$ What is the equation of \mathbf{L}
A. $y=10 x-5$
B. $x+y=6$
C. $x+10 y=51$
D. $10 x+3 y=25$ E. $y=5 x$
67. If $\boldsymbol{x}+\mathbf{7 y}=\mathbf{2 9}$ is an equation of the line normal to the graph of \boldsymbol{f} at the point $(\mathbf{1}, \mathbf{4})$, then $\boldsymbol{f}^{\prime}(\mathbf{1})=$
A. 7
B. $\frac{1}{7}$
C. $-\frac{1}{7}$
D. $-\frac{7}{29}$
E. -7
68. The line perpendicular to the tangent of the curve represented by the equation $y=x^{2}+6 x+4$ at the point $(-2,-4)$ also intersects the curve at $\boldsymbol{x}=$
A. ${ }_{-6}$
B. $-\frac{9}{2}$
C. $-\frac{7}{2}$
D. -3
E. $-\frac{1}{2}$
69. An equation of the line normal to the graph of $\boldsymbol{y}=\boldsymbol{x}^{4}-\mathbf{3} \boldsymbol{x}^{2}+\mathbf{1}$ at the point where $\boldsymbol{x}=\mathbf{1}$ is
A. $2 x-y+3=0$
B. $x-2 y+3=0$ C. $2 x-y-3=0$
D. $x-2 y-3=0$
E. $x-2 y=0$
70. An equation of the line normal to the graph of $\boldsymbol{y}=7 \boldsymbol{x}^{4}+2 x^{3}+x^{2}+\mathbf{2 x + 5}$ at the point where $\boldsymbol{x}=\mathbf{0}$ is
A. $x+2 y=10$
B. $\mathbf{2 x}+\boldsymbol{y}=\mathbf{1 0}$
C. $5 x+5 y=2$
D. $2 x-y=-5$
E. $2 x+y=-10$
71. Find the equation of the line normal to $\boldsymbol{y}=\mathbf{4} \boldsymbol{x}^{2}+\mathbf{2 x + 9}$ at the point where $\boldsymbol{x}=\mathbf{1}$
A. $10 x+y=-151$
B. $x+10 y=151$
C. $x-y=9$
D. $10 x-y=-5$
E. $x-10 y=151$
72. The coordinates of the point where the normal to the curve $y=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+x$ at $x=1$ intersects the y-axis are
A. $\left(0, \frac{3}{2}\right)$
B. $\left(\frac{3}{2}, 0\right)$
C. $\left(0, \frac{13}{6}\right)$
D. $\left(\frac{13}{6}, 0\right)$
E. $\left(0, \frac{5}{3}\right)$
73. The line normal to the curve $\boldsymbol{y}=\boldsymbol{x}^{2}$ at $(2,4)$ intersects the curve at $\boldsymbol{x}=$
A. -3
B. $-\frac{5}{2}$
C. $-\frac{9}{4}$
D. $\mathbf{- 2}$
E. $-\frac{3}{2}$
74. Find the value of \boldsymbol{x} at which the normal to the curve $\boldsymbol{y}=\boldsymbol{x}^{2}+1$ at $\boldsymbol{x}=\mathbf{3}$ intersects the curve again.
75. The line normal to the function $\boldsymbol{f}(\boldsymbol{x})=\mathbf{4}-\boldsymbol{x}^{\mathbf{2}}$ at $\boldsymbol{x}=\mathbf{- 1}$ intersects the curve again. Find the value of the function at that point.
76.

\boldsymbol{x}	-4	-3	-2	-1	0	$\mathbf{1}$	2	$\mathbf{3}$	$\mathbf{4}$
$\boldsymbol{g}^{\prime}(\boldsymbol{x})$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{0}$	$-\mathbf{3}$	-2	-1	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{2}$

The derivative \boldsymbol{g}^{\prime} of a function \boldsymbol{g} is continuous and has exactly two zeros. Selected values of \boldsymbol{g}^{\prime} are given in the table. If the domain of \boldsymbol{g} is the set of all real numbers, then \boldsymbol{g} is decreasing on which of the following intervals ?
A. $-2 \leq x \leq 2$ only
B. $-1 \leq x \leq 1$ only
C. $x \geq-2$
D. $x \geq 2$ only
E. $\boldsymbol{x} \leq \mathbf{- 2}$ or $x \geq 2$
77. Given the function shown on the right, how many of the following statements are true?
I. $f^{\prime}(b)=0$
II. $f^{\prime \prime}(a)<0$
III. $f^{\prime \prime}(c)<0$
IV. $\boldsymbol{f}^{\prime \prime}(b)>0$

A. 0
B. 1
C. 2
D. 3
E. 4
78. If \boldsymbol{y} is a function of \boldsymbol{x} such that $\boldsymbol{y}^{\prime}>\boldsymbol{0}$ for all \boldsymbol{x} and $\boldsymbol{y}^{\prime \prime}<\mathbf{0}$ for all \boldsymbol{x}, which of the following could be part of the graph of $\boldsymbol{f}(\boldsymbol{x})$
A.

B.

C.

D.

E.

79.

Use the graph on the right for this and the next two questions.

At which labelled point do both

$$
\frac{d y}{d x} \text { and } \frac{d^{2} y}{d x^{2}} \text { equal zero? }
$$

A. P
B. \boldsymbol{Q}
C. \boldsymbol{R}
D. S
E. \boldsymbol{T}
80. At which labelled point is $\frac{d y}{d x}$ positive and $\frac{d^{2} y}{d x^{2}}$ equal to zero?
A. P
B. Q
C. R
D. \boldsymbol{S}
E. \boldsymbol{T}
81. At which labelled point is $\frac{d y}{d x}$ equal to zero and $\frac{d^{2} y}{d x^{2}}$ negative?
A. P
B. \boldsymbol{Q}
C. R
D. S
E. T
82.

At which point on the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ is $\boldsymbol{f}^{\prime}(\boldsymbol{x})<\mathbf{0}$ and $\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})>\mathbf{0}$

A. \mathbf{A}
B. B
C. \mathbf{C}
D. \mathbf{D}
E. E
83.

The graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ is shown in the diagram. On which of the following intervals are $\frac{d y}{d x}>\mathbf{0}$ and $\frac{d^{2} y}{d x^{2}}<0$
I. $a<x<b$
II. $b<x<c$
III. $c<x<d$
A. I only
B. II only
C. III only
D. I and II
E. II and III
84.

The graph of a twice-differentiable function f is shown in the figure on the right. Which of the following is true?

A. $f(1)<f^{\prime}(1)<f^{\prime \prime}(1)$
B. $f(1)<f^{\prime \prime}(1)<f^{\prime}(\mathbf{1})$
C. $f^{\prime}(1)<f(1)<f^{\prime \prime}(1)$
D. $f^{\prime \prime}(\mathbf{1})<f(\mathbf{1})<f^{\prime}(\mathbf{1})$
E. $f^{\prime \prime}(1)<f^{\prime}(1)<f(1)$
85.

At which of the five points on the graph in the figure at the right are

$$
\frac{d y}{d x} \text { and } \frac{d^{2} y}{d x^{2}} \text { both negative? }
$$

A. A
B. B
C. \mathbf{C}
D. \mathbf{D}
E. \mathbf{E}
86.

The graph of the derivative of a twice differentiable function f is shown in the graph. If $\boldsymbol{f} \mathbf{(1) = - \mathbf { 2 } \text { which of the }}$ following is true?

A. $f(2)<f^{\prime}(2)<f^{\prime \prime}(2)$
B. $f^{\prime \prime}(2)<f^{\prime}(2)<f(2)$
C. $f^{\prime}(2)<f(2)<f^{\prime \prime}(2)$
D. $f(2)<f^{\prime \prime}(2)<f^{\prime}(2)$
E. $f^{\prime}(2)<f^{\prime \prime}(2)<f(2)$
87.

At which point on the graph of $\boldsymbol{y}=\boldsymbol{g}(\boldsymbol{x})$ on the right is $\boldsymbol{g}^{\prime}(\boldsymbol{x})=\mathbf{0}$ and $\boldsymbol{g}^{\prime \prime}(\boldsymbol{x})<\mathbf{0}$

A. \mathbf{A}
B. B
C. \mathbf{C}
D. \mathbf{D}
E. \mathbf{E}
88.

A. A
B. B
C. \mathbf{C}
D. \mathbf{D}
E. \mathbf{E}
89.

The graph of \boldsymbol{f} is shown in the diagram and \boldsymbol{f} is twice differentiable. Which of the following has the smallest value?
I. $f(-1)$
II. $f^{\prime}(-1)$
III. $f^{\prime \prime}(-1)$

A. I only
B. II only
C. III only
D. I and II
E. II and III
90.

The graph of \boldsymbol{f} is shown on the right and f is twice differentiable. Which of the following has the largest value $f(\mathbf{0}), f^{\prime}(\mathbf{0})$ or $f^{\prime \prime}(\mathbf{0})$
A. $f(0)$
B. $f^{\prime}(0)$
C. $f^{\prime \prime}(0)$
D. $\boldsymbol{f}(\mathbf{0})$ and $\boldsymbol{f}^{\prime}(\mathbf{0})$
E. $\boldsymbol{f}^{\prime}(\mathbf{0})$ and $\boldsymbol{f}^{\prime \prime}(\mathbf{0})$
91.

The graph of \boldsymbol{g}, a twice-differentiable function is shown in the diagram. Choose the correct order for the values of $\boldsymbol{g}(\mathbf{1}), \boldsymbol{g}^{\prime}(\mathbf{1})$ and $\boldsymbol{g}^{\prime \prime}(\mathbf{1})$

A. $g(1)<g^{\prime}(1)<g^{\prime \prime}(1)$
B. $g^{\prime}(\mathbf{1})<g^{\prime \prime}(\mathbf{1})<g(\mathbf{1})$
C. $g^{\prime \prime}(1)<g(1)<g^{\prime}(1)$
D. $g^{\prime}(1)<g(1)<g^{\prime \prime}(1)$
E. cannot be determined
92.

Derivatives of	$y=e^{u}$	and
	$y^{\prime}=e^{u} \frac{d u}{d x}$	

93. If $f(x)=\ln x^{3}$ then $f^{\prime \prime}(3)=$
A. $-\frac{1}{3}$
B. -1
C. -3
D. 1
E.
none of these
94. If $y=e^{x}(x-1)$ then $y^{\prime \prime}(0)=$
A. $\mathbf{- 2}$
B. -1
C. 0
D. 1
E. none of these
95. The domain of the function defined by $f(x)=\ln \left(x^{2}-x-6\right)$ is the set of all real numbers x such that
A. $x>0$
B. $-2 \leq x \leq 3$
C. $-2 \leq x$ or $x \geq 3$
D. $-2<x<3$
E. $-2>x$ or $x>3$
96. Find y^{\prime} given $y=\ln \left(x \sqrt{x^{2}+1}\right)$
A.

$$
1+\frac{x}{x^{2}+1}
$$

B. $\frac{1}{x \sqrt{x^{2}+1}}$
C. $\frac{2 x^{2}+1}{x \sqrt{x^{2}+1}}$
D. $\frac{2 x^{2}+1}{x\left(x^{2}+1\right)}$
E. none of these
97. $\log _{\frac{1}{b}} x=$
A. $-\log _{b} x$
B. $\log _{x} b$
C. $-\log _{x} b$
D. \boldsymbol{b}^{x}
E. none of these
98. If $f(x)=2 e^{x}+e^{2 x}$ then $f^{\prime \prime \prime}(0)=$
A. 10
B. 8
C. 6
D. 4
E. 3
99. If $e^{g(x)}=2 x+1$ then $g^{\prime}(x)=$
A. $\frac{1}{2 x+1}$
B. $\frac{2}{2 x+1}$
C. $2(2 x+1)$
D. $\boldsymbol{e}^{2 x+1}$
E. $\ln (2 x+1)$
100. If $f(x)=(x+1)^{\frac{3}{2}}-e^{x^{2}-9}$ then $f^{\prime}(3)=$
A. -5
B. -3
C. 0
D. 1
E. 3
101. Simplify: $\ln 2+\ln 5-\ln 8-\ln 15=$
A. ${ }_{-\ln 12}$
B. $\ln 12$
C. $\ln 7-\ln 23$
D. $-\ln \left(\frac{1}{12}\right)$
E. $\ln (-16)$
102. Let $f(x)=\ln \left(x^{2}-x-6\right)$
a) the domain of $\boldsymbol{f}(\boldsymbol{x})$ is
b) find $f(5)$
c) find $f^{\prime}(-3)$
103. If $y=f(x)=x^{3}+\ln x$ then $y^{\prime}=$
A. $3 x^{2} \ln x+x^{2}$
B. $\frac{1}{4} x^{4}+\frac{1}{x}$
C. $3 x^{2}+\frac{1}{x}$
D. $3 x^{2}+x \ln x$
E.
none of these
104. Solve: $\log _{9} x^{2}=9$
A. 1
B. $\mathbf{3}^{3}$
C. 3^{9}
D. $\pm 3^{9}$
E. 3^{18}
105. If $f(x)=x \ln x$, then $f^{\prime \prime \prime}(e)=$
A. $\frac{1}{e}$
B. 0
C. $-\frac{1}{e^{2}}$
D. $\frac{1}{e^{2}}$
E. $\frac{\mathbf{2}}{\boldsymbol{e}^{3}}$
106.

If $e^{g(x)}=\frac{x^{x}}{x^{2}-1}$ then $g(x)=$
A.
$x \ln x-2 x$
B. $\frac{\ln x}{2}$
C. $(x-2) \ln x$
D. $\frac{x \ln x}{\ln \left(x^{2}-1\right)}$
E. $x \ln x-\ln \left(x^{2}-1\right)$
107. If $\ln x-\ln \left(\frac{1}{x}\right)=2$, then $x=$
A. $\frac{1}{e^{2}}$
B. $\frac{1}{e}$
C. e
D. $2 e$
E. \boldsymbol{e}^{2}
108.

If $y=x^{2} e^{x}$ then $\frac{d y}{d x}=$
A. $\mathbf{2} \boldsymbol{x} \boldsymbol{e}^{\boldsymbol{x}}$
B. $x\left(x+2 e^{x}\right)$
C. $x e^{x}(x+2)$
D. $2 x+e^{x}$
E. $2 x+e$
109.

If $y=\ln [(x+1)(x+2)]$, then $\frac{d y}{d x}=$
A. $\frac{1}{x+1}+(x+2)$
B. $\frac{1}{(x+2)}+(x+1)$
C. $\frac{1}{(x+1)(x+2)}$
D. $\frac{x+1}{x+2}$
E. $\frac{1}{x+1}+\frac{1}{x+2}$
110. Solve: $\quad \mathbf{x}=\boldsymbol{7}^{1+\log _{7} 4}$
A. 3
B. 6
C. 7
D. 10
E. 14
111. What is \boldsymbol{x} when $\mathbf{6}=\boldsymbol{e}^{5 x}$
A. $\frac{e^{6}}{5}$
B. $6-\ln 5$
C. $5 \ln 6$
D. $\frac{\ln 6}{5}$
E. $\frac{6}{e^{5}}$
112. $\ln _{e} \mathbf{1 0}=$
A. $\ln _{10} e$
B. $\frac{1}{\ln _{10} e}$
C. e^{10}
D. $\sqrt[10]{e}$
E.
$10(\ln e)$
113. The tangent to the curve of $\boldsymbol{y}=\boldsymbol{x} \boldsymbol{e}^{-x}$ is horizontal when \boldsymbol{x} is equal to
A. 0
B. 1
C. -1
D. $\frac{1}{e}$
E. none of these
114.

Find $\frac{d y}{d x}$ for $y=\ln \sqrt{x^{2}+4}$
A. $\frac{x}{\sqrt{x^{2}+4}}$
B. $\frac{2 x}{\sqrt{x^{2}+4}}$
C. $\frac{x}{x^{2}+4}$
D. $\frac{1}{x}$
E. none of these
115. Find an equation for the tangent line to the graph of $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{\operatorname { l n }}\left(\boldsymbol{x}^{2}-1\right)$ at the point where $x=2$
A. $4 x-3 y=8$
B. $4 x-y=8-\ln 3$
C. $4 x-3 y=-1$
D. $4 x-3 y=8-\ln 27$
E. none of these
116. If $f(x)=e^{-2 x}$, then $f^{(4)}(x)=$
A. $16 e^{-x}$
B. $16 e^{-2 x}$
C. $-8 e^{-2 x}$
D. $8 e^{-2 x}$
E. $-16 e^{-2 x}$
117. If $\log _{b}\left(3^{b}\right)=\frac{b}{2}$, then $b=$
A. $\frac{1}{9}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. 3
E. 9
118. Find $\frac{d y}{d x}$, if $y=x \ln ^{3} x$
A. $\frac{3 \ln ^{2} x}{x}$
B. $\mathbf{3 ~}^{2} \boldsymbol{x}$
C. $\mathbf{3 x} \ln ^{2} x+\ln ^{3} x$
D. $3(\ln x+1)$
E.
none of these
119.

If $y=\frac{e^{\ln u}}{u}$, then $\frac{d y}{d u}=$
A. $\frac{\boldsymbol{e}^{\ln u}}{\boldsymbol{u}^{2}}$
B. $e^{\ln u}$
C. $\frac{2 e^{\ln u}}{u^{2}}$
D. 1
E. 0
120. What is the slope of the tangent line to the curve $y=\ln \frac{x^{2}}{\sqrt{x^{2}+1}}$ at the point where $x=\mathbf{2}$
A. 1
B. $-\frac{2}{3}$
C. $\frac{4}{7}$
D. $\frac{3}{5}$
E. $-\frac{2}{9}$
121. What is the slope of the tangent line to the curve $\boldsymbol{y}=\ln \left(x^{2}+\mathbf{1}\right)$ when $\boldsymbol{x}=\mathbf{3}$
A. $\frac{1}{10}$
B. $\frac{3}{10}$
C. $\frac{\mathbf{1}}{\mathbf{5}}$
D. $\frac{1}{15}$
E. $\frac{\mathbf{3}}{\mathbf{5}}$
122. The derivative of $f(x)=\ln \left(x^{2}+2 x+1\right)$ is
A. $\frac{2 x}{x^{2}+2 x+1}$
B. $\frac{2}{x+1}$
C. $\frac{1}{x^{2}+2 x+1}$
D. $\frac{1}{x+1}$
E. $\frac{2 x+3}{x^{2}+2 x+1}$
123. If $f(x)=\ln \left(x+4+e^{-3 x}\right)$ then $f^{\prime}(0)=$
A. $-\frac{2}{5}$
B. $\frac{\mathbf{1}}{\mathbf{5}}$
C. $\frac{\mathbf{1}}{\mathbf{4}}$
D. $\frac{2}{5}$
E. nonexistent
124. If $\mathbf{6 y}=3 \boldsymbol{e}^{2 x}$ then $y^{\prime}=$
A. $\frac{1}{2} e^{2 x}$
B. $3 \boldsymbol{e}^{x}$
C. $3 e^{2 x}$
D. $6 e^{x}$
E. $e^{2 x}$
125. If $f(x)=x^{2} \ln x^{3}$ then $f^{\prime}(x)=$
A. $3 x+\ln x^{3}$
B. $3 x\left(1+\ln x^{2}\right)$
C. $\frac{1}{x}$
D. $2 x$
E. $2 x \ln 3 x^{2}$
126.

If $y=e^{\frac{1}{2} \ln \left(x^{2}-4 x+7\right)}$ then $\frac{d y}{d x}=$
A.
$\boldsymbol{e}^{\frac{1}{2} \ln \left(x^{2}-4 x+7\right)}$
B.
$x-2$
C.
$\frac{1}{\sqrt{x^{2}-4 x+7}}$
D.

$$
\frac{x-2}{\sqrt{x^{2}-4 x+7}}
$$

E. $(2 x-4) e^{\frac{1}{2} \ln \left(x^{2}-4 x+7\right)}$
127. Given the equation $\boldsymbol{y}=\mathbf{3} \boldsymbol{e}^{-2 \boldsymbol{x}}$ what is an equation of the normal line to the graph at $\boldsymbol{x}=\boldsymbol{\operatorname { l n }} \mathbf{2}$
A. $y=\frac{2}{3}(x-\ln 2)+\frac{3}{4}$
B. $y=\frac{2}{3}(x+\ln 2)-\frac{3}{4}$
C. $y=-\frac{3}{2}(x-\ln 2)+\frac{3}{4}$
D. $y=-\frac{3}{2}(x-\ln 2)-\frac{3}{4}$
E. $y=24(x-\ln 2)+12$
128.

The equation of the normal line to the graph of $y=e^{2 x}$ at the point where $\frac{d y}{d x}=2$ is
A. $y=-\frac{1}{2} x-1$
B. $y=-\frac{1}{2} x+1$
C. $y=2 x+1$
D. $y=-\frac{1}{2}\left(x-\frac{\ln 2}{2}\right)+2$
E. $y=2\left(x-\frac{\ln 2}{2}\right)+2$
129. Find $\frac{d y}{d x}$ for $y=\ln (5-x)^{6}$
A. $\frac{1}{(5-x)^{6}}$
B. $\frac{6}{x-5}$
C. $-6(5-x)^{5}$
D. $6(5-x)^{5}$
E.
none of these
130. The slope of the line tangent to the graph of $\boldsymbol{y}=\boldsymbol{\operatorname { l n }}\left(\boldsymbol{x}^{2}\right)$ at $\boldsymbol{x}=\boldsymbol{e}^{2}$ is
A. $\frac{1}{e^{2}}$
B. $\frac{\mathbf{2}}{\boldsymbol{e}^{2}}$
C. $\frac{4}{e^{2}}$
D. $\frac{1}{e^{4}}$
E. $\frac{4}{e^{4}}$
131.

If $\log _{a} 2^{a}=\frac{a}{4}$ then $a=$
A. 2
B. 4
C. 8
D. 16
E. 32
132.

The slope of the line tangent to the graph of $\boldsymbol{y}=\ln \left(\frac{\boldsymbol{x}}{2}\right)$ at $\boldsymbol{x}=\mathbf{4}$ is
A. $\frac{\mathbf{1}}{\mathbf{8}}$
B. $\frac{\mathbf{1}}{4}$
C. $\frac{1}{2}$
D. 1
E. 4
133. If $f(x)=\log _{b} x$ and $g(x)=b^{x}$, then $f(g(x))=$
A. 1
B. x
C. x^{b}
D. \boldsymbol{b}^{x}
E. $\log _{x} b$
134. Simplify: $\quad \ln e^{4}=$
A. 4
B. 10^{4}
C. $4(\ln 10)$
D. e^{4}
E. $4 e$
135. If $y=\ln \left(x^{x}\right)$ then $y^{\prime}=$
A. $1+\ln x$
B. $y(1+\ln x)$
C. $x+\ln x$
D. $y(x+\ln x)$
E. $x \ln x$
136. If $f(x)=x^{2} \ln x$ then $f^{\prime}(x)=$
A. 2
B. $x+2 \ln x$
C. $2 x \ln x$
D. $1+2 x \ln x$
E. $x+2 x \ln x$
137. Simplify: $\quad 2 \ln e^{5 x}=$
A. $10 x$
B. $\mathbf{5} \boldsymbol{x}^{2}$
C. $\mathbf{2 5} \boldsymbol{x}^{2}$
D. $e^{10 x}$
E. $e^{5 x^{2}}$
138. If $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{e}^{2 x}$ and $\boldsymbol{g}(\boldsymbol{x})=\ln \boldsymbol{x}$ then the derivative of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{g}(\boldsymbol{x}))$ at $\boldsymbol{x}=\boldsymbol{e}$ is
A. e^{2}
B. $2 e^{2}$
C. $2 e$
D. 2
E. undefined
139. If $f(x)=e^{2 \ln x}$ then $f^{\prime}(3)=$
A.
6
B. 9
C. e^{6}
D. e^{9}
E. $\frac{e^{9}}{9}$
140.

If $y=e^{8 x^{2}+1}$ then $\frac{d y}{d x}=$
A. $e^{8 x^{2}}$
B. $e^{8 x^{2}+1}$
C. $16 x e^{8 x^{2}}$
D. $16 x e^{8 x^{2}+1}$
E. $\left(8 x^{2}+1\right) e^{8 x^{2}}$
141. $\frac{d}{d x} \ln \left(\frac{1}{1-x}\right)=$
A. $\frac{1}{1-x}$
B. $\frac{1}{x-1}$
C. $1-x$
D. $x-1$
E. $(1-x)^{2}$
142. If $f(x)=x \ln \left(x^{2}\right)$ then $f^{\prime}(x)=$
A. $\ln \left(x^{2}\right)+1$
B. $\ln \left(x^{2}\right)+2$
C. $\ln \left(x^{2}\right)+\frac{1}{x}$
D. $\frac{1}{x^{2}}$
E. $\frac{1}{x}$
143. $\frac{d}{d x}\left(\ln e^{3 x}\right)=$
A. 1
B. 3
C. $3 x$
D. $\frac{1}{e^{3 x}}$
E. $\frac{3}{\boldsymbol{e}^{3 x}}$
144. The slope of the line tangent to the graph of $y=\ln \sqrt{x}$ at $\left(e^{2}, \mathbf{1}\right)$ is
A. $\frac{e^{2}}{2}$
B. $\frac{\mathbf{2}}{\boldsymbol{e}^{2}}$
C. $\frac{1}{2 e^{2}}$
D. $\frac{1}{2 e}$
E. $\frac{1}{\boldsymbol{e}}$
145.

If $f(x)=e^{3 \ln x^{2}}$ then $f^{\prime}(x)=$
A. $e^{3 \ln x^{2}}$
B. $\frac{3}{x^{2}} e^{3 \ln x^{2}}$
C. $6(\ln x) e^{3 \ln x^{2}}$
D. $5 \boldsymbol{x}^{4}$
E. $6 x^{5}$
146. If $f(x)=\ln \left(x^{x}\right)$ then $f^{\prime}\left(e^{2}\right)=$
A. 2
B. 3
C. $2 e$
D. $3 e^{2}$
E. none of these
147.

If $\boldsymbol{y}=\boldsymbol{e}^{n x}$ then $\frac{d^{n} y}{d x^{n}}$ (the $\boldsymbol{n}^{\text {th }}$ derivative of \boldsymbol{y} with respect to \boldsymbol{x}) is
A. $n!e^{x}$
B. $n!e^{n x}$
C. $n e^{n x}$
D. $n^{n} e^{x}$
E. $n^{n} e^{n x}$
148. The equation of the tangent to the curve $\ln \boldsymbol{y}=\mathbf{3} \boldsymbol{x}^{2}+\mathbf{6} \boldsymbol{x}$ at the point where $\boldsymbol{x}=\mathbf{0}$ is
A. $y=6 x+1$
B. $y=6 x+6$
C. $y=6 x y+6$
D. $y=\frac{6 x}{y}+6$
E.
none of these
149.

If $y=x(\ln x)^{2}$ then $\frac{d y}{d x}=$
A. $3(\ln x)^{2}$
B. $(\ln x)(2 x+\ln x)$
C. $(\ln x)(2+\ln x)$
D. $(\ln x)(2+x \ln x)$
E. $\quad(\ln x)(1+\ln x)$
150. If $f(x)=3 x \ln x$ then $f^{\prime}(x)=$
A. $3+\ln \left(x^{3}\right)$
B. $1+\ln \left(x^{3}\right)$
C. $\frac{3}{x}+3 \ln x$
D. $\frac{3}{x^{2}}$
E. $\frac{1}{x}$
151. $\frac{d}{d x} \ln \left(\frac{1}{x^{2}-1}\right)=$
A. $\frac{1}{x^{2}-1}$
B. $-\frac{2 x}{x^{2}-1}$
C. $\frac{2 x}{x^{2}-1}$
D. $2 x^{3}-2 x$
E. $\mathbf{2 x}-\mathbf{2} \boldsymbol{x}^{3}$
152.

If $f(x)=\sqrt{e^{2 x}+1}$ then $f^{\prime}(0)=$
A. $-\frac{\sqrt{2}}{2}$
B. $\frac{\sqrt{2}}{4}$
C. $\frac{\sqrt{2}}{2}$
D. 1
E. $\sqrt{2}$
153. If $f(x)=e^{x} \ln x$ then $f^{\prime}(e)=$
A. $e^{e-1}+e^{e}$
B. $e^{e+1}+e^{e}$
C. $e^{e}+e$
D. $e^{e}+\frac{1}{e}$
E. e^{e-1}
154.

If $y=\ln (3 x+5)$ then $\frac{d^{2} y}{d x^{2}}=$
A. $\frac{3}{3 x+5}$
B. $\frac{3}{(3 x+5)^{2}}$
C. $\frac{9}{(3 x+5)^{2}}$
D. $\frac{-9}{(3 x+5)^{2}}$
E. $\frac{-3}{(3 x+5)^{2}}$
155. The slope of the line normal to the curve $\boldsymbol{y}=\boldsymbol{x} \boldsymbol{e}^{\boldsymbol{x}}$ at $\boldsymbol{x}=\mathbf{- 1}$ is
A. 0
B. $\frac{\mathbf{2}}{\boldsymbol{e}}$
C. $-\frac{e}{2}$
D. e
E. undefined
156. If $x=\frac{1}{2}$ when $x=\log _{y} x$ then $y=$
A. $\frac{1}{4}$
B. $\frac{1}{2}$
C. 1
D. 2
E. 4
157.

If $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{e}^{\boldsymbol{x}}$ and $\boldsymbol{g}(\boldsymbol{x})=\frac{\mathbf{1}}{\boldsymbol{x}}$ then the derivative of $\boldsymbol{f}(\boldsymbol{g}(\boldsymbol{x}))$, evaluated at $\boldsymbol{x}=\mathbf{2}$ is
A. $-\frac{\sqrt{e}}{2}$
B. $-\frac{\sqrt{e}}{4}$
C. $-\frac{e}{4}$
D. $\frac{e}{2}$
E. \sqrt{e}
158.

If the function $f(x)=\ln \left(x^{2}-1\right)$ then $\frac{f(7)-f(5)}{f^{\prime}(7)-f^{\prime}(5)}=$
A. $-8 \ln 2$
B. $-8 \ln 24$
C. $-12 \ln 2$
D. $-12 \ln 24$
E. $-6 \ln 24$
159. If $f(x)=x^{e} e^{x}$ then $f^{\prime}(x)=$
A. $\boldsymbol{x}^{e} \boldsymbol{e}^{x}$
B. $\boldsymbol{x}^{e-1} \boldsymbol{e}^{x-1}$
C. $e^{x}\left(e x^{e}+x^{e}\right)$
D. $\frac{x^{e}(e+x)}{x e^{x}}$
E. $\frac{x^{e} e^{x}(x+e)}{x}$
160.

If $y=x-1$ and $x>1$ then $\frac{d^{2}(\ln y)}{d x^{2}}=$
A. 0
B. $\frac{1}{x-1}$
C. $-\frac{1}{x-1}$
D. $\frac{1}{(x-1)^{2}}$
E. $-\frac{1}{(x-1)^{2}}$
161. The slope of the line normal to the curve $\boldsymbol{y}=\boldsymbol{x} \boldsymbol{e}^{\boldsymbol{x}^{3}}$ at $\boldsymbol{x}=\mathbf{1}$ is
A. $-\frac{4}{e}$
B. $-\frac{e}{4}$
C. $-\frac{1}{4 e}$
D. $\frac{4}{e}$
E. $\mathbf{4 e}$
162. If $f(x)=1+\ln (x+2)$ then $f^{-1}(x)=$
A. $e^{x-1}-2$
B. $e^{x+1}-2$
C. $e^{x-1}+2$
D. $e^{x+1}+2$
E. none of these
163. If $f(x)=x \ln \sqrt{x}$ what is $f^{\prime}(x)=$
A. $\ln \sqrt{x}+\frac{1}{2}$
B. $\ln \sqrt{x}+\frac{x}{2}$
C. $\ln \sqrt{x}+1$
D. $\ln \sqrt{x}+\frac{\sqrt{x}}{2}$
E. $\ln \frac{1}{2 \sqrt{x}}$
164. If $y=e^{4 x^{2}}$ then $\frac{d(\ln y)}{d x}=$
A. $8 \boldsymbol{x}$
B. $4 x^{2}$
C. $8 x e^{4 x^{2}}$
D. $8 x e^{8 x}$
E. $\frac{8 x}{e^{4 x^{2}}}$
165. If $f(x)=\ln \left(x^{2}-e^{2 x}\right)$ then $f^{\prime}(1)=$
A. 0
B. 1
C. 2
D. \boldsymbol{e}
E. undefined
166. Write the equation of the line perpendicular to the tangent of the curve represented by the equation $\boldsymbol{y}=\boldsymbol{e}^{\boldsymbol{x + 1}}$ at $\boldsymbol{x}=\mathbf{0}$
A. $y=-\frac{1}{e} x$
B. $y=-\frac{1}{e} x+e$
C. $y=e x+e$
D. $y=\frac{1}{e} x+e$
E. $y=e x$
167. The second derivative of $\boldsymbol{f}(\boldsymbol{x})=\ln \boldsymbol{x}$ at $\boldsymbol{x}=\mathbf{3}$ is
A. $-\frac{1}{3}$
B. $-\frac{1}{9}$
C. $\frac{1}{9}$
D. $\frac{1}{3}$
E. $\frac{2}{3}$
168. Find the equation of the line tangent to $f(x)=2 x+2 e^{x}$ at $x=0$
A. $y=4 x+2$
B. $y=2 x+2$
C. $y=4 x$
D. $y=4 x-2$
E. $y=-\frac{1}{4} x+2$
169. Find $y^{\prime \prime}$ for $y=x \ln x-3 x$
A. $\frac{1}{x}-3$
B. $1+\ln x$
C. $\ln x-2$
D. $\frac{1}{x}$
E. $\frac{1}{x}-\mathbf{2}$
170. If $f(x)=e^{\frac{1}{x}}$ then $f^{\prime}(x)=$
A. $-\frac{e^{\frac{1}{x}}}{x^{2}}$
B. $-\boldsymbol{e}^{\frac{1}{x}}$
C. $\frac{e^{\frac{1}{x}}}{x}$
D. $\frac{e^{\frac{1}{x}}}{x^{2}}$
E. $\frac{1}{x} \boldsymbol{e}^{\frac{1}{x}-1}$
171. If $f(x)=\ln \sqrt{x}$ then $f^{\prime \prime}(x)=$
A. $-\frac{2}{x^{2}}$
B. $-\frac{1}{2 x^{2}}$
C. $-\frac{1}{2 x}$
D. $-\frac{1}{2 x^{\frac{3}{2}}}$
E. $\frac{2}{\boldsymbol{x}^{2}}$
172.

If $f(x)=(x-1)^{\frac{3}{2}}+\frac{e^{x-2}}{2}$ then $f^{\prime}(2)=$
A.
B. $\frac{3}{2}$
C. 2
D. $\frac{7}{2}$
E. $\frac{3+e}{2}$
173.

If $y=\ln \left(e^{-t^{2}}+10\right)$ then $\frac{d y}{d x}=$
A. $-2 t$
B. $\frac{1}{e^{-t^{2}}+10}$
C. $\frac{-2 t e^{-t^{2}}}{e^{-t^{2}}+10}$
D. $\frac{-2 t}{e^{-t^{2}}+10}$
E. $-2 t+\frac{1}{10}$
174. The function f defined by $f(x)=e^{3 x}+6 x^{2}+\mathbf{1}$ has a horizontal tangent at $x=$
A. $\mathbf{- 0 . 1 4 4}$
B. $\mathbf{- 0 . 1 5 0}$
C. $\mathbf{- 0 . 1 5 6}$
D. $\mathbf{- 0 . 1 6 2}$
E. $\mathbf{- 0 . 1 6 8}$
175.

The graph of the derivative of the function \boldsymbol{f} is shown in the diagram. If $\boldsymbol{f}(\mathbf{0})=\mathbf{0}$ then which of the following is true?

A. $f(-1)<f^{\prime}(-1)<f^{\prime \prime}(-1)$
B. $f(-1)<f^{\prime \prime}(-1)<f^{\prime}(-1)$
C. $f^{\prime}(-1)<f^{\prime \prime}(-1)<f(-1)$
D. $f^{\prime \prime}(-1)<f(-1)<f^{\prime}(-1)$ E. $f^{\prime \prime}(-1)<f^{\prime}(-1)<f(-1)$
176.

The graph of the twice differentiable function $\boldsymbol{f}(\boldsymbol{x})$ is shown in the graph. Which of the following statements is true ?

A. $f(2)<f^{\prime}(2)<f^{\prime \prime}(2)$
B. $f(2)<f^{\prime \prime}(2)<f^{\prime}(2)$
C. $f^{\prime}(2)<f(2)<f^{\prime \prime}(2)$
D. $f^{\prime}(2)<f^{\prime \prime}(2)<f(2)$
E. $f^{\prime \prime}(2)<f(2)<f^{\prime}(2)$
177.

Simplify: $\frac{\ln 16}{3 \ln 4-3 \ln 2}=$
A.
$\ln 2$
B. 2
C. $\frac{\ln 2}{\ln 8}$
D. $\frac{4}{3}$
E. none of these
178. Find the equation of the line perpendicular to the line tangent to $f(x)=\ln (3-2 x)$ at $x=1$
A. $y=-2 x+1$
B. $y=\frac{1}{2} x+1$
C. $y=\frac{1}{2}(x-1)$
D. $y=\frac{1}{2}(x+1)$ E. $y=-2 x+2$
179.

Implicit Differentiation \rightarrow used when it is very difficult or impossible to isolate the variable \boldsymbol{y} in terms of \boldsymbol{x} Involves lots of chain rule/product rule operations.
180. If $x y+y=3$ then $\frac{d y}{d x}=$
A. $\frac{-y}{1+x}$
B. 0
C. $\frac{3}{y}$
D. $\frac{3}{1+x}$
E. $-y$
181.

If $x+y=x y$ then $\frac{d y}{d x}=$
A. $\frac{1}{x-1}$
B. $\frac{y-1}{x-1}$
C. $\frac{1-y}{x-1}$
D. $x+y-1$
E. $\frac{2-x y}{y}$
182.

If $y^{2}-2 x y=16$ then $\frac{d y}{d x}=$
A. $\frac{x}{y-x}$
B. $\frac{y}{x-y}$
C. $\frac{y}{y-x}$
D. $\frac{y}{2 y-x}$
E. $\frac{2 y}{x-y}$
183.

If $x^{2}+x y+y^{3}=0$ then in terms of x and $y, \frac{d y}{d x}=$
A. $-\frac{2 x+y}{x+3 y^{2}}$
B. $-\frac{x+3 y^{2}}{2 x+y}$
C. $\frac{-2 x}{1+3 y^{2}}$
D. $\frac{-2 x}{x+3 y^{2}}$
E. $-\frac{2 x+y}{x+3 y^{2}-1}$
184.

If $x^{2}-2 x y+3 y^{2}=8$ then $\frac{d y}{d x}=$
A. $\frac{8+2 y-2 x}{6 y-2 x}$
B. $\frac{3 y-x}{y-x}$
C. $\frac{2 x-2 y}{6 y-2 x}$
D. $\frac{1}{3}$
E. $\frac{y-x}{3 y-x}$
185.

Find $\frac{d y}{d x}$ if $x^{2}+y^{2}=-2 x y$
A. 1
B. -1
C. $\frac{x-y}{x+y}$
D. $\frac{x+y}{x-y}$
E. $-\frac{x+2 y}{x}$
186. Find y^{\prime} if $y^{2}-3 x y+x^{2}=7$
A. $\frac{2 x+y}{3 x-2 y}$
B. $\frac{3 y-2 x}{2 y-3 x}$
C. $\frac{2 x}{3-2 y}$
D. $\frac{2 x}{y}$
E. none of these
187.

Given y is a differentiable function of x, find $\frac{d y}{d x}$ for $x^{3}-x y+y^{3}=1$
A. $\frac{3 x^{2}}{x-3 y^{2}}$
B. $\frac{\mathbf{3} \boldsymbol{x}^{2}-1}{1-3 y^{2}}$
C. $\frac{y-3 x^{2}}{3 y^{2}-x}$
D. $\frac{3 x^{2}+3 y^{2}-y}{x}$
E. $\frac{3 x^{2}+3 y^{2}}{x}$
188. If $y^{2}=x+y^{3}$ then $y^{\prime}=$
A.
$1+3 y^{2}$
B. $\frac{1}{2 y-3 y^{2}}$
C. $\frac{2 x}{3-y^{2}}$
D. $\frac{1}{2 y\left(1+y^{2}\right)}$
E. $\frac{1}{2 y\left(1+3 y^{2}\right)}$
189. Find $\frac{d y}{d x}$ for $2 x^{2}+x y+3 y^{2}=0$
A. $-\frac{4 x+y}{x+6 y}$
B. $-\frac{4 x+y}{6 y}$
C. $4 x+y+6 y$
D. $\frac{4 x+6 y}{-x}$
E. none of these
190. Given y is a differentiable function of x, find $\frac{d y}{d x}$ for $3 x^{2}-\mathbf{2 x y}+5 y^{2}=\mathbf{1}$
A. $\frac{3 x+y}{x-5 y}$
B. $\frac{y-3 x}{5 y-x}$
C. $3 x+5 y$
D. $\frac{3 x+4 y}{x}$
E. none of these
191. If $x^{2}+y^{3}=x^{3} y^{2}$ then $\frac{d y}{d x}=$
A. $\frac{2 x+3 y^{2}-3 x^{2} y^{2}}{2 x^{3} y}$
B. $\frac{2 x^{3} y+3 x^{2} y^{2}-2 x}{3 y^{2}}$
C. $\frac{3 x^{2} y^{2}-2 x}{3 y^{2}-2 x^{3} y}$
D. $\frac{3 y^{2}-2 x^{3} y}{3 x^{2} y^{2}-2 x}$
E. $\frac{6 x^{2} y-2 x}{3 y^{2}}$
192. If $x y^{2}-y^{3}=x^{2}-5$ then $\frac{d y}{d x}=$
A. $\frac{y^{2}-2 x}{3 y^{2}-2 x y}$
B. $\frac{y^{2}-2 x+5}{3 y^{2}-2 x y}$
C. $\frac{2 x-5}{2 y-3 y^{2}}$
D. $\frac{2 x}{2 y-3 y^{2}}$
E. $\frac{x+y^{2}}{x y}$
193. If $x^{3}+\mathbf{3 x y}+2 y^{3}=\mathbf{1 7}$ then in terms of x and $y \frac{d y}{d x}=$
A. $-\frac{x^{2}+y}{x+2 y^{2}}$
B. $-\frac{x^{2}+y}{x+y^{2}}$
C. $-\frac{x^{2}+y}{x+2 y}$
D. $-\frac{x^{2}+y}{2 y^{2}}$
E. $-\frac{x^{2}}{1+2 y^{2}}$
194.

Find $\frac{d y}{d x}$ for $e^{y}=x y$
A. $\ln x+\ln y$
B. $\frac{x+y}{x y}$
C. $\frac{x y}{x+y}$
D. $\frac{x y-x}{y}$
E. $\frac{y}{x y-x}$
195. Find y^{\prime} if $\ln x y=x+y$
A. $-\frac{y}{x}$
B. \boldsymbol{e}^{x+y}
C. $\frac{x y}{1-x y}$
D. $\frac{x y-y}{x-x y}$
E. none of these
196. Find \boldsymbol{y}^{\prime} if $\boldsymbol{x} \boldsymbol{e}^{y}+\mathbf{1}=\boldsymbol{x} \boldsymbol{y}$
A. 0
B. $\frac{y-e^{y}}{x e^{y}-x}$
C. $\frac{y}{e^{y}-x}$
D. $\frac{e^{y}}{x \boldsymbol{e}^{y}-1}$
E. none of these
197. Consider the curve $\boldsymbol{x}+\boldsymbol{x y}+\mathbf{2} \boldsymbol{y}^{2}=\mathbf{6}$ The slope of the line tangent to the curve at the point $(\mathbf{2}, \mathbf{1})$ is
A. $\frac{\mathbf{2}}{3}$
B. $\frac{\mathbf{1}}{\mathbf{3}}$
C. $-\frac{1}{3}$
D. $-\frac{1}{5}$
E. $-\frac{3}{4}$
198. The equation of the tangent to the curve $\mathbf{2} \boldsymbol{x}^{2}-\boldsymbol{y}^{4}=\mathbf{1}$ at the point $(-\mathbf{1}, \mathbf{1})$ is
A. $y=-x$
B. $y=2-x$
C. $4 y+5 x+1=0$
D. $x-2 y+3=0$
E. $x-4 y+5=0$
199. If $y^{2}-\mathbf{2} x y=21$ then $\frac{d y}{d x}$ at the point $(2,-3)$ is
A. $-\frac{6}{5}$
B. $-\frac{3}{5}$
C. $-\frac{\mathbf{2}}{\mathbf{5}}$
D. $\frac{\mathbf{3}}{\mathbf{8}}$
E. $\frac{\mathbf{3}}{\mathbf{5}}$
200. The slope of the curve $\boldsymbol{y}^{2}-\boldsymbol{x y}-\mathbf{3 x}=\mathbf{1}$ at the point $(\mathbf{0},-\mathbf{1})$ is
A. -1
B. -2
C. 1
D. 2
E. -3
201. What is the slope of the line tangent to the curve $3 y^{2}-2 x^{2}=6-2 x y$ at the point $(\mathbf{3}, 2)$
A. 0
B. $\frac{4}{9}$
C. $\frac{7}{9}$
D. $\frac{6}{7}$
E. $\frac{5}{3}$
202. The slope of the line tangent to the graph of $3 \boldsymbol{x}^{2}+5 \ln \boldsymbol{y}=\mathbf{1 2}$ at $(\mathbf{2}, \mathbf{1})$ is
A. $-\frac{12}{5}$
B. $\frac{12}{5}$
C. $\frac{5}{12}$
D. 12
E. -7
203.

If $y=\ln \left(x^{2}+y^{2}\right)$ then the value of $\frac{d y}{d x}$ at the point $(1,0)$ is
A. 0
B. $\frac{1}{2}$
C. 1
D. 2
E. undefined
204. Consider the curve $5 x-x y+y^{2}=7$ The slope of the line tangent to the curve at the point $(1,2)$ is
A. -2
B. $\mathbf{- 1}$
C. $\mathbf{0}$
D. 1
E. 2
205.

If $y^{2}+x y=6$ what is $\frac{d y}{d x}$ at the point $(-1,3)$
A. $-\frac{3}{5}$
B. $-\frac{3}{7}$
C. $\frac{3}{7}$
D. $\frac{\mathbf{3}}{5}$
E. $\frac{\mathbf{6}}{\mathbf{5}}$
206. The equation of the line tangent to the curve $\boldsymbol{y}^{2}-\mathbf{2 x}-\mathbf{4} \boldsymbol{y}=\mathbf{1}$ at $(-2,1)$ is
A. $y=-x-1$
B. $-y=-x-3$
C. $3 y=-x+1$
D. $5 y=-x+3$
E. none of these
207. If $\boldsymbol{x} y^{2}+\mathbf{2} x y=8$ then at the point $\left(\mathbf{1 , 2)} \boldsymbol{y}^{\prime}=\right.$
A. $-\frac{5}{2}$
B. $-\frac{4}{3}$
C. -1
D. $-\frac{1}{2}$
E. 0
208.

If $7=x y-e^{x y}$ then $\frac{d y}{d x}=$
A.
$x-e^{y}$
B.
$y=e^{x}$
C. $\frac{y e^{x y}+y}{x-x e^{x y}}$
D. $\frac{-y}{x}$
E. $\frac{y e^{x y}+y}{x+x e^{x y}}$
209. Which is the slope of the line tangent to $\boldsymbol{y}^{2}+\boldsymbol{x y}-\boldsymbol{x}^{2}=\mathbf{1 1}$ at $(\mathbf{2}, \mathbf{3})$
A. $-\frac{5}{2}$
B. 0
C. $\frac{1}{8}$
D. $\frac{4}{7}$
E. $\frac{9}{7}$
210. The slope of the line tangent to the curve $\mathbf{3} \boldsymbol{x}^{2}-\mathbf{2 x y}+\boldsymbol{y}^{2}=\mathbf{1 1}$ at the point $(\mathbf{1},-\mathbf{2})$ is
A. $-\frac{1}{6}$
B. 0
C. 1
D. $\frac{5}{3}$
E. 10
211. Find an equation of the tangent line to the graph of $\boldsymbol{x}^{2}+\mathbf{2} \boldsymbol{y}^{2}=\mathbf{3}$ at the point $(\mathbf{1}, \mathbf{1})$
A. $y-1=-\frac{x}{2 y}(x-1)$
B. $y+1=-\frac{1}{2}(x+1)$
C. $y-1=\frac{1}{2}(x-1)$
D.

$$
x+2 y=3
$$

E. none of these
212.

Suppose $x^{2}-x y+y^{2}=3$ Find $\frac{d y}{d x}$ at the point (a, b)
A. $\frac{a-2 b}{2 a-b}$
B. $\frac{b-2 a}{2 b-a}$
C. $\frac{a-2 b}{2 a+b}$
D. $\frac{b-2 a}{2 b+a}$
E. $\frac{b+2 a}{2 b+a}$
213.

If $(x-y)^{2}=y^{2}-x y$ then $\frac{d y}{d x}=$
A. $\frac{2 x-y}{2 y-x}$
B. $\frac{2 x-y}{2 x}$
C. $\frac{2 x-y}{x}$
D. $\frac{2 x+3 y}{x}$
E. undefined
214. The slope of the line tangent to the graph of $\ln (x+y)=x^{2}$ at the point where $x=1$ is
A. 0
B. 1
C. $e-1$
D. $2 e-1$
E. $\quad \boldsymbol{e}-2$
215. The slope of the line tangent to the graph of $\ln (x y)=x$ at the point where $x=1$ is
A. 0
B. 1
C. e
D. e^{2}
E. $1-e$
216. If $e^{x y}=\ln x$ then $\frac{d y}{d x}=$
A. $\frac{1}{e^{x y}}$
B. $\frac{1-x y e^{x y}}{x^{2} e^{x y}}$
C. $\frac{1-x y}{x e^{x y}}$
D. $\frac{x y-1}{x^{2} e^{x y}}$
E. $\frac{1-x y}{x^{2} e^{x y}}$
217. The curve defined by $\boldsymbol{x}^{3}+\boldsymbol{x y}-\boldsymbol{y}^{2}=\mathbf{1 0}$ has a vertical tangent line when $\boldsymbol{x}=$
A. 0 or $-\frac{1}{3}$
B.
C.
2.074
D. 2.096
E.
2.154
218. The slope of the line tangent to the curve $\boldsymbol{y}^{2}+(\boldsymbol{x y}+\mathbf{1})^{3}=\mathbf{0}$ at $(\mathbf{2},-\mathbf{1})$ is
A. $-\frac{3}{2}$
B. $-\frac{3}{4}$
C. $\mathbf{0}$
D. $\frac{3}{4}$
E. $\frac{3}{2}$
219. The curve $\mathbf{3} \boldsymbol{y}^{\mathbf{2}}-\mathbf{3} \boldsymbol{x} \boldsymbol{y}+\mathbf{2} \boldsymbol{x}^{3}=\mathbf{7}$ has vertical tangents when
A. $x=y$
B. $2 x=y$
C. $x=2 y$
D. $3 x=y$
E. $x=3 y$
220. If $e^{x y}=2$ then at the point $(1, \ln 2) \frac{d y}{d x}=$
A. $-\ln 2$
B. $2 \ln 2$
C. $\ln 2$
D. $-2 e$
E. $-4 \ln 2$
221.

The slope of $9 x-4 x \ln y=\mathbf{3}$ at $\left(\frac{\mathbf{1}}{\mathbf{3}}, \mathbf{1}\right)$ is
A. $9-4 \ln 3$
B. 5
C. 6
D. $\frac{27}{4}$
E. $9+4 \ln 3$
222. If $2 x^{3}+3 x y+e^{y}=6$ what is \boldsymbol{y}^{\prime} when $\boldsymbol{x}=\mathbf{0}$
A. $\mathbf{- 0 . 8 9 6}$
B. $\mathbf{0 . 8 9 6}$
C. $\mathbf{1 . 7 9 2}$
D. $\mathbf{- 1 . 7 9 2}$
E. 0
223. If $y^{2}-3 x=7$ then $\frac{d^{2} y}{d x^{2}}=$
A. $\frac{-9}{4 y^{3}}$
B. $\frac{3}{2 y}$
C. 3
D. $\frac{-3}{y^{3}}$
E. $\frac{-6}{7 y^{3}}$
224.

If a point moves on the curve $x^{2}+y^{2}=\mathbf{2 5}$, then, at $(0,5), \frac{d^{2} y}{d x^{2}}$ is
A. 0
B. $\frac{1}{5}$
C. $\mathbf{- 5}$
D. $-\frac{1}{5}$
E. nonexistent
225.

If $y^{2}-3 x=7$ then $\frac{d^{2} y}{d x^{2}}=$
A. $\frac{-6}{7 y^{3}}$
B. $\frac{-3}{y^{3}}$
C. 3
D. $\frac{3}{2 y}$
E. $\frac{-9}{4 y^{3}}$
226.

If $\frac{d y}{d x}=\sqrt{1-y^{2}}$, then $\frac{d^{2} y}{d x^{2}}=$
A. $-2 y$
B. $-y$
C. $-\frac{y}{\sqrt{1-y^{2}}}$
D. y
E. $\frac{1}{2}$
227.

The table gives values of $\boldsymbol{f}, \boldsymbol{f}^{\prime}, \boldsymbol{g}$ and \boldsymbol{g}^{\prime} at selected values of x If $h(x)=f(\boldsymbol{g}(x))$ then $\boldsymbol{h}^{\prime}(\mathbf{1})=$

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
-1	6	5	3	-2
1	3	-3	-1	2
3	1	-2	2	3

A. 5
B. 6
C. 9
D. 10
E. 12
228.

If $f(x)=\frac{4}{x-1}$ and $g(x)=2 x$ then the solution set of $f(g(x))=g(f(x))$ is
A. $\frac{1}{3}$
B. 2
C. 3
D. $-1,2$
E. $\frac{1}{3}, \mathbf{2}$
229. Let \boldsymbol{f} and \boldsymbol{g} be differentiable functions such that

$$
\begin{array}{lll}
f(1)=2 & f^{\prime}(1)=3 & f^{\prime}(2)=-4 \\
g(1)=2 & g^{\prime}(1)=-3 & g^{\prime}(2)=5
\end{array}
$$

If $h(x)=f(g(x))$ then $h^{\prime}(1)=$
A. -9
B. -4
C. $\mathbf{0}$
D. 12
E. 15
230. If f and g are twice differentiable and if $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{f}\left(\boldsymbol{g}(\boldsymbol{x})\right.$), then $\boldsymbol{h}^{\prime \prime}(\boldsymbol{x})=$
A. $f^{\prime \prime}(g(x))\left[g^{\prime}(x)\right]^{2}+f^{\prime}(g(x)) g^{\prime \prime}(x)$
B. $f^{\prime \prime}(g(x)) g^{\prime}(x)+f^{\prime}(g(x)) g^{\prime \prime}(x)$
C. $f^{\prime \prime}(g(x))\left[g^{\prime}(x)\right]^{2}$
D. $f^{\prime \prime}(g(x)) g^{\prime \prime}(x)$
E. $f^{\prime \prime}(g(x))$
231. Let \boldsymbol{f} and \boldsymbol{g} be differentiable functions such that

$$
\begin{aligned}
f(1) & =4, & g(1) & =3, \\
f^{\prime}(1) & =-4, & f^{\prime}(3) & =-5 \\
g^{\prime}(1) & =-3, & & g^{\prime}(3)
\end{aligned}
$$

If $\boldsymbol{h}(\boldsymbol{x})=f(\boldsymbol{g}(x))$ then $\boldsymbol{h}^{\prime}(1)=$
A. -9
B. 15
C. 0
D. -5
E. $\mathbf{- 1 2}$
232.

The function \mathbf{F} is defined by

$$
\mathrm{F}(x)=G[x+G(x)]
$$

where the graph of the function \boldsymbol{G} is shown on the right.
The approximate value of $\mathbf{F}^{\prime}(\mathbf{1})=$

A. $\frac{7}{3}$
B. $\frac{\mathbf{2}}{\mathbf{3}}$
C. $-\mathbf{2}$
D. -1
E. $-\frac{2}{3}$
233. The graphs of functions \boldsymbol{f} and \boldsymbol{g} are shown on the right. If $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{g}[f(x)]$ which of the following statements are true about the function \boldsymbol{h}
I. $h(0)=4$
II. \boldsymbol{h} is increasing at $\boldsymbol{x}=\mathbf{2}$
III. The graph of \boldsymbol{h} has a horizontal tangent at $\boldsymbol{x}=\mathbf{4}$

A. I only
B. II only
C. I and II only
D. II and III only
E. I, II and III
234. The composite function \boldsymbol{h} is defined by $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{f}[\boldsymbol{g}(\boldsymbol{x})]$ where \boldsymbol{f} and \boldsymbol{g} are functions whose graphs are shown below.

The number of horizontal tangent lines to the graph of \boldsymbol{h} is
A. 3
B. 4
C. 5
D. 6
E. 7
235. The graphs of functions \boldsymbol{f} and \boldsymbol{g} are shown at the right. If $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{f}[\boldsymbol{g}(\boldsymbol{x})]$, which of the following statements are true about the function \boldsymbol{h}
I. $h(2)=5$
II. \boldsymbol{h} is increasing at $\boldsymbol{x}=\mathbf{4}$
III. The graph of \boldsymbol{h} has a horizontal tangent at $\boldsymbol{x}=\mathbf{1}$

A. I only
B. II only
C. III only
D. II and III only
E. I, II and III

The second derivative of the function \boldsymbol{f} is given by $f^{\prime \prime}(x)=x(x-a)(x-b)^{2}$ The graph of $f^{\prime \prime}$ is shown in the diagram. For what values of \boldsymbol{x} does the graph of \boldsymbol{f} have a point of inflection ?

A. $\mathbf{0}$ and \boldsymbol{a} only
B. $\mathbf{0}$ and \boldsymbol{m} only
C. \boldsymbol{b} and \boldsymbol{j} only
D. $\mathbf{0}, \boldsymbol{a}$ and \boldsymbol{b}
E. $\boldsymbol{b}, \boldsymbol{j}$ and \boldsymbol{k}
237.

The graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ on the closed interval [2,7] is shown. How many points of inflection does this graph have on this interval?

A. One
B. Two
C. Three
D. Four
E. Five
238.

The diagram shows the graph of the derivative of a function f How many points of inflection does \boldsymbol{f} have in the interval shown?

A. none
B. one
C. two
D. three
E. four
239. The function \boldsymbol{f} is defined on the closed interval $[-2,3]$ The graph of $\boldsymbol{y}=f^{\prime}(\boldsymbol{x})$ is shown in the diagram. Which of the following describes the relative extrema of \boldsymbol{f} and the points of inflection of the graph of \boldsymbol{f}

A. $\mathbf{1}$ relative minimum, $\mathbf{1}$ relative maximum and $\mathbf{1}$ point of inflection
B. $\mathbf{1}$ relative minimum and $\mathbf{2}$ points of inflection
C. $\mathbf{2}$ relative minima and $\mathbf{1}$ point of inflection
D. $\mathbf{1}$ relative minimum and $\mathbf{1}$ point of inflection
E. $\mathbf{1}$ relative maximum and $\mathbf{1}$ point of inflection
240. The function f is defined by $f^{\prime}(x)=(x-2)^{2}(x-7)^{3}$ The graph of f has an inflection point where $\boldsymbol{x}=$
A. 4 only
B. 7 only
C. $\mathbf{2}$ and $\mathbf{4}$ only
D. $\mathbf{2}$ and $\mathbf{7}$ only
E. 2, 4 and 7
241. The function defined by $f(x)=(x-1)(x+2)^{2}$ has inflection points at $x=$
A. -2 only
B. $\mathbf{- 1}$ only
C. 0 only
D. - $\mathbf{2}$ and $\mathbf{0}$ only E. $\mathbf{- 2}$ and $\mathbf{1}$ only
242. For some key values of \boldsymbol{x}, the values of $\boldsymbol{f}(\boldsymbol{x})$, $\boldsymbol{f}^{\prime}(\boldsymbol{x})$, and $\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$ are given in the table. The equation of the tangent to the curve $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ at the point of inflection shown in the table is:

x	-8	-6	-4	-2	0	2	4
$f(x)$	0	5	0	-2	-4	-6	-4
$f^{\prime}(x)$	4	0	-4	-2	-1	0	1
$f^{\prime \prime}(x)$	-2	-6	-2	0	1	4	3

A. $y=4 x$
B. $y=4 x+8$
C. $y=-6 x+24$
D. $y=-2 x-6$
E. $y=-x+3$
243. Which of the following statements are true about the function f if its derivative f^{\prime} is defined by $f^{\prime}(x)=x(x-a)^{3}$ where $a>0$
I. The graph of \boldsymbol{f} is increasing at $\boldsymbol{x}=\mathbf{2 a}$
II. The function \boldsymbol{f} has a local maximum at $\boldsymbol{x}=\mathbf{0}$
III. The graph of \boldsymbol{f} has an inflection point at $\boldsymbol{x}=\boldsymbol{a}$
A. I only
B. I and II only
C. I and III only
D. II and III only
E. I, II and III
244. If $f^{\prime}(x)=x^{3}(x+2)^{2}$ then the graph of f has inflection points when $x=$
A. -2 only
B. 0 only
C. - $\mathbf{2}$ and 0 only
D. -2 and $-\frac{6}{5}$ only
E. $-\mathbf{2},-\frac{\mathbf{6}}{\mathbf{5}}$ and $\mathbf{0}$
245. If $f^{\prime}(x)=-5(x-3)^{2}(x-2)$ which of the following features does the graph of $f(x)$ have ?
A. a local minimum at $\boldsymbol{x}=\mathbf{2}$ and a local maximum at $\boldsymbol{x}=\mathbf{3}$
B. a local maximum at $\boldsymbol{x}=\mathbf{2}$ and a local minimum at $\boldsymbol{x}=\mathbf{3}$
C. a point of inflection at $\boldsymbol{x}=\mathbf{2}$ and a local minimum at $\boldsymbol{x}=\mathbf{3}$
D. a local minimum at $\boldsymbol{x}=\mathbf{2}$ and a point of inflection at $\boldsymbol{x}=\mathbf{3}$
E. a local maximum at $\boldsymbol{x}=\mathbf{2}$ and a point of inflection at $\boldsymbol{x}=\mathbf{3}$
246. A function $f(x)$ exists such that $f^{\prime \prime}(x)=(x-2)^{2}(x+1)$. How many points of inflection does $f(x)$ have ?
A. none
B. one
C. two
D. three
E. cannot be determined
247. $f(x)=x^{2}-3 x^{3}$ has a point of inflection at
A. $x=0$
B. $x=\frac{1}{9}$
C. $x=\frac{2}{9}$
D. $x=\frac{1}{3}$
E. There is no inflection point
248. The graph of $\boldsymbol{y}=\mathbf{2} \boldsymbol{x}^{3}+5 \boldsymbol{x}^{2}-\mathbf{6} x+7$ has a point of inflection at $x=$
A. $-\frac{5}{3}$
B.
C. $-\frac{5}{6}$
D. $\frac{5}{2}$
E. -2
249. The number of inflection points in the curve $f(x)=x^{4}-4 x^{2}$ is
A. 0
B. 1
C. 2
D. 3
E. 4
250. An equation of the line tangent to $\boldsymbol{y}=\boldsymbol{x}^{3}+\mathbf{3} \boldsymbol{x}^{2}+\mathbf{2}$ at it's point of inflection is
A. $y=-6 x-6$
B. $y=-3 x+1$
C. $y=2 x+10$
D. $y=3 x-1$
E. $y=4 x+1$
251. If the graph of $\boldsymbol{y}=\boldsymbol{x}^{3}+\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}-\mathbf{4}$ has a point of inflection at $(\mathbf{1},-\mathbf{6})$, what is the value of \boldsymbol{b}
A. -3
B. 0
C. 1
D. 3
E. It cannot be determined from the information given
252. At what value of x does the graph of $y=\frac{1}{x^{2}}-\frac{1}{x^{3}}$ have a point of inflection?
A. 0
B. 1
C. 2
D. 3
E. at no value of \boldsymbol{x}
253.

What is the value of \boldsymbol{k} such that the curve $\boldsymbol{y}=\boldsymbol{x}^{3}-\frac{\boldsymbol{k}}{\boldsymbol{x}}$ has a point of inflection at $\boldsymbol{x}=\mathbf{1}$
A. $k=2$
B. $k=-2$
C. $k=3$
D. $k=-3$
E. none of these
254. The curve $y=x^{5}+10 x^{4}-5$ has points of inflection at $x=$
A. 0 and -8
B. 0 and -6
C. $\mathbf{- 8}$ only
D. -6 only
E. 0 only
255. The curve $\boldsymbol{y}=\mathbf{1}-\mathbf{6} \boldsymbol{x}^{2}-\boldsymbol{x}^{4}$ has inflection points at $\boldsymbol{x}=$
A. $\pm \sqrt{3}$
B. 1
C. $\mathbf{- 1}$
D. ± 1
E. none
256. The slope of the line tangent to the curve $f(x)=x^{3}+3 x^{2}-\mathbf{2 4 x}+\mathbf{4}$ at the point of inflection is
A. $\mathbf{- 2 7}$
B. $\mathbf{- 1 5}$
C. 30
D. 32
E. none of these
257. The curve $\boldsymbol{y}=\mathbf{3} \boldsymbol{x}^{4}-\mathbf{8} x^{3}+\mathbf{6} x^{2}-\mathbf{1}$ has points of inflection at $x=$
A. 1 only
B. -1 only
C. $-\mathbf{1}$ and $-\frac{1}{3}$ D. -1 and 1
E. $\mathbf{1}$ and $\frac{\mathbf{1}}{\mathbf{3}}$
258. The equation of the line tangent to the curve $f(x)=2 x^{3}-\mathbf{3} x^{2}$ at the point of inflection is
A. $y=0$
B. $y=x$
C. $y=-x$
D. $3 x-2 y=1$
E. $6 x+4 y=1$
259. An equation for the line tangent to the curve $f(x)=-\boldsymbol{x}^{\mathbf{3}}+\mathbf{1 2 x + 5}$ at the point of inflection is
A. $12 x-y=3$
B. $y-12 x=3$
C. $12 x-y=5$
D. $y-12 x=5$
E. $12 x-y=35$
260. The curve $y=3 x^{5}-5 x^{4}+3 x-2$ has a point of inflection at
A. $(-1,-13)$ only
B. ($\mathbf{0},-\mathbf{2}$) only
C. $(\mathbf{1},-\mathbf{1})$ only
D. $(\mathbf{1},-\mathbf{1})$ and $(0,-2)$
E. none of these
261. If the graph of $\boldsymbol{f}(\boldsymbol{x})=\mathbf{2} \boldsymbol{x}^{2}+\frac{\boldsymbol{k}}{\boldsymbol{x}}$ has a point of inflection at $\boldsymbol{x}=-\mathbf{1}$ then the value of \boldsymbol{k} is
A. $\mathbf{- 2}$
B. -1
C. $\mathbf{0}$
D. 1
E. 2
262. The function $\boldsymbol{y}=\boldsymbol{x}^{4}+\boldsymbol{b} x^{2}+\mathbf{8} x+1$ has a horizontal tangent and a point of inflection for the same value of \boldsymbol{x} What must be the value of \boldsymbol{b}
A. -6
B. $\mathbf{- 1}$
C. 1
D. 4
E. 6
263. How many points of inflection does the graph of $y=2 x^{6}+\mathbf{9} x^{5}+\mathbf{1 0} x^{4}-x+2$ have ?
A. none
B. one
C. two
D. three
E. four
264. If the graph of $\boldsymbol{y}=\boldsymbol{x}^{3}+\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}-\mathbf{8}$ has a point of inflection at $(\mathbf{2}, \mathbf{0})$, what is the value of \boldsymbol{b}
A. 0
B. 4
C. 8
D. 12
E. the value of \boldsymbol{b} cannot be determined from the given information
265. What is the \boldsymbol{x}-coordinate of the point of inflection on the graph of $\boldsymbol{y}=\boldsymbol{x} \boldsymbol{e}^{\boldsymbol{x}}$
A. $\mathbf{- 2}$
B. $\mathbf{- 1}$
C. $\mathbf{0}$
D. 1
E. 2
266. What is the x-coordinate of the point of inflection of the graph of $y=x^{3}+\mathbf{3} x^{2}-\mathbf{4 5 x} \boldsymbol{x} \mathbf{8 1}$
A. -9
B. -5
C. $\mathbf{- 1}$
D. 1
E. 3
267. What are the \boldsymbol{x}-coordinates of the points of inflection on the graph of the function $f(x)=3 x^{4}-4 x^{3}+6$
A. 0 only
B. $\frac{\mathbf{2}}{\mathbf{3}}$ only
C. 1 only
D. $\mathbf{0}$ and $\frac{\mathbf{2}}{\mathbf{3}}$
E. $\mathbf{0}$ and $\mathbf{1}$
268. Given the function $\boldsymbol{h}(\boldsymbol{x})=\mathbf{6} \boldsymbol{x}^{\mathbf{3}}-\mathbf{8} \boldsymbol{x}^{2}+\mathbf{2}$, at what \boldsymbol{x} value(s) is/are the inflection point(s) ?
A. $x=\frac{4}{9}$
B. $x=0$ and $x=\frac{8}{9}$
C. $\boldsymbol{x}=\mathbf{0}$
D. $x=0, x=\frac{4}{9}$ and $x=\frac{8}{9}$
E. $x=0$ and $x=\frac{4}{9}$
269. How many inflection points does $3 x^{4}-5 x^{3}-9 x+2$ have ?
A. 0
B. 1
C. 2
D. 3
E. 4
270. What is the \boldsymbol{x}-coordinate of the point of inflection on the graph of $\boldsymbol{y}=\frac{\mathbf{2}}{\mathbf{3}} \boldsymbol{x}^{\mathbf{3}}-\mathbf{2} \boldsymbol{x}^{2}+\mathbf{7}$
A. -1
B. 1
C. 2
D. $\frac{13}{3}$
E. $\frac{17}{3}$
271. What is the x-coordinate of the point of inflection for the graph of $y=x^{3}+\mathbf{3} x^{2}-\mathbf{1}$
A. $\mathbf{- 2}$
B. $\mathbf{- 1}$
C. 0
D. 1
E. 2
272. A particle moves along the \boldsymbol{x}-axis so that its position at time \boldsymbol{t} is $\boldsymbol{x}(\boldsymbol{t})=\mathbf{2 t} \boldsymbol{t}^{2}-\mathbf{7} \boldsymbol{t}+\mathbf{3}$ (\boldsymbol{x} in cm and \boldsymbol{t} in seconds). What is the velocity (in $\mathrm{cm} / \mathrm{sec}$) at time $\boldsymbol{t}=\mathbf{2}$ seconds?
A. -6
B. -3
C. 1
D. 4
E. none of these
273. A particle moves along the \boldsymbol{x}-axis according to the function $\boldsymbol{x}(\boldsymbol{t})=\boldsymbol{t}^{2}-4 \boldsymbol{t}+3$, where \boldsymbol{x} (metres) is the position of the particle at time \boldsymbol{t} (seconds). At what time \boldsymbol{t} does the particle have a velocity of $6 \mathrm{~m} / \mathrm{s}$
A. 1
B. 2
C. 5
D. 8
E. none of these
274. A particle moves along the x-axis so that its position at time t is $\boldsymbol{x}(\boldsymbol{t})=\mathbf{3} \boldsymbol{t}^{3}+2 t^{2}+7$ where \boldsymbol{x} is in meters and \boldsymbol{t} is in seconds. Find the velocity at $\boldsymbol{t}=\mathbf{2}$ seconds.
A. $26 \mathrm{~m} / \mathrm{s}$
B. $39 \mathrm{~m} / \mathrm{s}$
C. $42 \mathrm{~m} / \mathrm{s}$
D. $44 \mathrm{~m} / \mathrm{s}$
E. none of these
275. A particle moves along the x-axis according to the position function $x(t)=2 t^{3}-6 t^{2}+9$ where \boldsymbol{x} is in meters and \boldsymbol{t} is in seconds. Find the value(s) of \boldsymbol{t} when the particle is stationary.
A. $t=0$
B. $t=2$
C. $t=0, t=-2$
D. $t=0, t=2$
E. none of these
276. A particle moves along the \boldsymbol{x}-axis so that its position at time \boldsymbol{t} is $\boldsymbol{x}(\boldsymbol{t})=\boldsymbol{t}^{2}-\mathbf{2 t + 5}$ where \boldsymbol{x} is in centimeters and t is in seconds. At what time is the particle's velocity $\mathbf{4} \mathbf{~ c m} / \boldsymbol{s}$
A. $t=1$
B. $t=3$
C. $t=6$
D. $t=13$
E. none of these
277. An object moves along the \boldsymbol{x}-axis so that its position at time \boldsymbol{t} is $\boldsymbol{x}=\boldsymbol{t}^{2}-\mathbf{3} \boldsymbol{t}+\mathbf{5}$ where \boldsymbol{x} is in meters and \boldsymbol{t} is in seconds. At what time(s) is its velocity $5 \mathrm{~m} / \mathrm{s}$
A. $t=1$
B. $t=4$
C. $t=7$
D. $t=0$ or 3
E. none of these
278. A particle moves along the x-axis according to the position function $x(t)=2 t^{3}-6 t+1$ where \boldsymbol{x} is in meters and \boldsymbol{t} is in seconds. For what values of \boldsymbol{t} is the particle moving to the right?
A. $-1<t<1$
B. $t<-1$ or $t>1$
C. all values of t
D. no values of t
279. The position of an object moving in a straight path is given by $\boldsymbol{x}(\boldsymbol{t})=\boldsymbol{k} \boldsymbol{t}^{2}+\mathbf{1 2 t}$, where \boldsymbol{x} is in meters and \boldsymbol{t} is in seconds. Find the value of \boldsymbol{k} if the velocity of the object is $\mathbf{4} \boldsymbol{m} / \boldsymbol{s}$ when $\boldsymbol{t}=\mathbf{2}$ seconds.
A. $\mathbf{- 1 2}$
B. -6
C. -3
D. -2
E. none of these
280. A particle moves along the x-axis according to the position function $x(t)=t^{3}-4 t^{2}+3$ (\boldsymbol{x} in meters, \boldsymbol{t} in seconds). Determine the velocity in $\boldsymbol{m} / \boldsymbol{s}$ at $\boldsymbol{t}=\mathbf{- 2}$
A. $\mathbf{- 2 1}$
B. 4
C. $\mathbf{2 8}$
D. 31
E. none of these
281. A particle moves along the \boldsymbol{x}-axis according to the position function $\boldsymbol{x}(\boldsymbol{t})=\boldsymbol{t}^{2}-\boldsymbol{t} \quad(\boldsymbol{x}$ in cm, \boldsymbol{t} in sec). Determine the time \boldsymbol{t} (in sec) when the velocity is $\mathbf{1 2} \mathbf{~ c m} / \mathbf{s}$
A. 0.5
B. 4
C. 6.5
D. 23
E. none of these
282. As a particle moves along the \boldsymbol{x}-axis, its distance from the origin is given by $\boldsymbol{x}(\boldsymbol{t})=\mathbf{3} \boldsymbol{t}^{2}-\mathbf{4 t} \boldsymbol{t} \mathbf{1 0}$ where \boldsymbol{x} is in meters and \boldsymbol{t} is in seconds. At what time is the velocity $\mathbf{1 4} \mathbf{m} / \boldsymbol{s}$
A. $\frac{2}{3} s$
B.
C. 3 s
D. $5 s$
E. none of these
283. An object moves so that its distance in metres, at time \boldsymbol{t} seconds, is given by $\boldsymbol{f}(\boldsymbol{t})$. What does $f^{\prime}(\mathbf{2})$ represent?
A. the velocity at time $2 s$
B. the time when the velocity is $2 \mathrm{~m} / \mathrm{s}$
C. the time when the distance is $\mathbf{2} \boldsymbol{m}$
D. the distance at time $2 s$
284. As a particle moves along the \boldsymbol{x}-axis, its distance from the origin is given by $\boldsymbol{x}=\boldsymbol{t}^{\mathbf{2}}-\mathbf{6} \boldsymbol{t}+\mathbf{5}$ At what time t (in seconds) is the velocity of the particle zero?
A. 2 seconds
B. 3 seconds
C. 5 seconds
D. 6 seconds
E. none of these
285. A particle moves along a line according to the distance function $\boldsymbol{s}(\boldsymbol{t})=\mathbf{2} \boldsymbol{t}^{\mathbf{3}}-\mathbf{2 1} \boldsymbol{t}^{\mathbf{2}}+\mathbf{6 0 t} \boldsymbol{t} \mathbf{1 3}$ During the time interval from $\boldsymbol{t}=\mathbf{1}$ to $\boldsymbol{t}=\mathbf{1 2}$, how many times does the paticle reverse its direction of movement?
A. 0
B. 1
C. 2
D. 3
E. 4
286. A particle moves along the \boldsymbol{x}-axis so that at time $\boldsymbol{t} \geq \mathbf{0}$ its position is given by $\boldsymbol{x}(\boldsymbol{t})=2 t^{3}-21 t^{2}+\mathbf{7 2 t - 5}$ At what time \boldsymbol{t} is the particle at rest?
A. $t=1$ only
B. $\boldsymbol{t}=\mathbf{3}$ only
C. $t=\frac{7}{2}$ only
D. $t=3$ and $t=\frac{7}{2}$
E. $t=3$ and $t=4$
287. The position of a particle moving along a straight line at any time t is given by $s(t)=t^{2}+4 t+4$ What is the acceleration of the particle when $t=4$
A. 0
B. 2
C. 4
D. 8
E. 12
288. A particle moves along the \boldsymbol{x}-axis so that at any time \boldsymbol{t} its position is given by $\boldsymbol{x}(\boldsymbol{t})=\boldsymbol{t} \boldsymbol{e}^{-2 \boldsymbol{t}}$ For what values of \boldsymbol{t} is the particle at rest ?
A. no values
B. $\mathbf{0}$ only
C. $\frac{\mathbf{1}}{\mathbf{2}}$ only
D. 1 only
E. $\mathbf{0}$ and $\frac{\mathbf{1}}{\mathbf{2}}$
289. A particle moves along the \boldsymbol{x}-axis so that at any time $\boldsymbol{t} \geq \mathbf{0}$ its position is given by $\boldsymbol{x}(\boldsymbol{t})=\boldsymbol{t}^{3}-\mathbf{3} t^{2}-9 t+1$ For what values of t is the particle at rest
A. no values
B. 1 only
C. 3 only
D. 5 only
E. 1 and 3
290. A particle starts at time $\boldsymbol{t}=\mathbf{0}$ and moves along a number line so that its position, at time $\boldsymbol{t} \geq \mathbf{0}$ is given by $\boldsymbol{x}(\boldsymbol{t})=(\boldsymbol{t}-\mathbf{2})^{\mathbf{3}}(\boldsymbol{t}-\mathbf{6})$ The particle is moving to the right for
A. $0<t<5$
B. $2<t<6$
C. $t>5$
D. $t \geq 0$
E. never
291.

The formula $\boldsymbol{x}(\boldsymbol{t})=\ln t+\frac{\boldsymbol{t}^{2}}{\mathbf{1 8}}+\mathbf{1}$ gives the position of an object moving along the \boldsymbol{x}-axis during the time interval $\mathbf{1 \leq t \leq 5}$ At the instant when the acceleration of the object is zero, the velocity is
A. 0
B. $\frac{1}{3}$
C. $\frac{\mathbf{2}}{\mathbf{3}}$
D. 1
E.
undefined
292. Which of the following must be true about a particle that starts at $\boldsymbol{t}=\mathbf{0}$ and moves along a number line if its position at time t is given by $s(t)=(t-2)^{3}(t-6)$
I. The particle is moving to the right for $t>5$
II. The particle is at rest at $\boldsymbol{t}=\mathbf{2}$ and $\boldsymbol{t}=\mathbf{6}$
III. The particle changes direction at $\boldsymbol{t}=\mathbf{2}$
A. I only
B. II only
C. III only
D. I and III only
E. none
293. A particle starts at time $\boldsymbol{t}=\mathbf{0}$ and moves along a number line so that its position, at time $\boldsymbol{t} \geq \mathbf{0}$, is given by $\boldsymbol{x}(\boldsymbol{t})=(\boldsymbol{t}-\mathbf{2})(\boldsymbol{t}-\mathbf{6})^{3}$ The particle is moving to the left for
A. $t>3$
B. $2<t<6$
C. $3<t<6$
D. $0 \leq t<3$
E. $t>6$
294. The position function of a moving particle on the x-axis is given as $s(t)=t^{3}+t^{2}-8 t$ for $\mathbf{0} \leq t \leq 10$ For what values of t is the particle moving to the right?
A. $t<-2$
B. $\boldsymbol{t}>\mathbf{0}$
C. $t<\frac{4}{3}$
D. $\mathbf{0}<\boldsymbol{t}<\frac{4}{3}$
E. $t>\frac{4}{3}$
295. A particle is moving along the \boldsymbol{x}-axis. Its position at time $\boldsymbol{t}>\mathbf{0}$ is \boldsymbol{e}^{2-t} What is its acceleration when $\boldsymbol{t}=\mathbf{2}$
A. e
B. 1
C. 0
D. -1
E. $-e$
296. A particle is moving along the \boldsymbol{x}-axis. Its position at time $\boldsymbol{t}>\mathbf{0}$ is $\boldsymbol{\operatorname { l n }}\left(\mathbf{2} \boldsymbol{t}^{\frac{3}{2}}+\mathbf{1}\right)$ What is its speed when $\boldsymbol{t}=\mathbf{4}$
A. 2.01
B. $\mathbf{3 . 0 6}$
C. $\mathbf{0 . 3 5 3}$
D. 4.63
E. 7.81
297. A particle moves along the \boldsymbol{x}-axis so that its position at time \boldsymbol{t} is given by $\boldsymbol{x}(\boldsymbol{t})=\mathbf{4} \boldsymbol{t}^{3}-\mathbf{3 3} \boldsymbol{t}^{2}+\mathbf{3 0 t}+\mathbf{1 2}$, where \boldsymbol{t} is measured in seconds and \boldsymbol{x} is measured in meters.
a) Determine the velocity, in $\boldsymbol{m} / \boldsymbol{s}$, of the particle at time $\boldsymbol{t}=\mathbf{2}$ seconds
b) Determine the time(s), in seconds, when the particle is stationary
298. A particle moves along the \boldsymbol{x}-axis such that its distance from the origin is given by $\boldsymbol{x}(\boldsymbol{t})=\mathbf{2 t ^ { 2 } + 6 0 t}$ where \boldsymbol{x} is in centimeters and \boldsymbol{t} is in seconds. When the particle's velocity is $\mathbf{7 2} \mathrm{cm} / \mathbf{s e c}$, determine its distance $\boldsymbol{x}(\boldsymbol{t})$ from the origin.
299. A particle moves along the x -axis so that its position at time \boldsymbol{t} is $\boldsymbol{x}(\boldsymbol{t})=\mathbf{4} \boldsymbol{t}^{\mathbf{3}}-\mathbf{2 1} \boldsymbol{t}^{\mathbf{2}}+\mathbf{3 0 t}$ where \boldsymbol{t} is measured in seconds, and \boldsymbol{x} is measured in meters.
a) Determine the time(s) when the particle is stopped.
b) Determine when the particle is moving to the left
300. A particle moves along the x-axis so that its position at time t is $x(t)=2 t^{3}-5 t^{2}-4 t+3$ (\boldsymbol{x} in cm and \boldsymbol{t} in seconds.)
a) At what time(s) is the particle stationary?
b) At what time(s) is the particle moving to the left?
301. Given the function $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{3}-\mathbf{3 x}+\mathbf{5}$ determine
a) the equation of the tangent line at $\boldsymbol{x}=\mathbf{2}$
b) the \boldsymbol{x}-values where the slope of the tangent line is equal to $\mathbf{0}$
302. A particle moves along the \boldsymbol{x}-axis so that its position at time \boldsymbol{t} is $\boldsymbol{x}(\boldsymbol{t})=\mathbf{2} \boldsymbol{t}^{\mathbf{3}}-\mathbf{9} \boldsymbol{t}^{2}+\mathbf{1 2 t}$ (\boldsymbol{x} in cm and \boldsymbol{t} in seconds)
a) Determine the time(s) when the particle is stopped
b) Determine the velocity of the particle at time $\boldsymbol{t}=\mathbf{3}$ seconds
303. A particle moves along the \boldsymbol{x}-axis so that its position at time \boldsymbol{t} is $\boldsymbol{x}(\boldsymbol{t})=\mathbf{4} t^{\mathbf{3}}-\mathbf{2 1} \boldsymbol{t}^{2}+\mathbf{1 8 t}+\mathbf{3}$ where \boldsymbol{t} is measured in seconds and \boldsymbol{x} is measured in meters.
a) Determine an equation for the velocity function
b) Determine the velocity at time $\boldsymbol{t}=\mathbf{2}$
c) Determine the time(s) when the particle is stationary
304. A particle moves along the \boldsymbol{x}-axis in such a way that its position at time \boldsymbol{t} is given by $x(t)=3 t^{4}-16 t^{3}+24 t^{2}$ for $-5 \leq t \leq 5$
a) Determine the velocity and acceleration of the particle at time t
b) At what values of \boldsymbol{t} is the particle at rest?
c) At what values of \boldsymbol{t} does the particle change direction?
d) What is the velocity when the acceleration is first zero ?
305. A particle moves along the \boldsymbol{x}-axis in such a way that its position at time \boldsymbol{t} for $\boldsymbol{t} \geq \mathbf{0}$ is given by $x(t)=\frac{1}{3} t^{3}-3 t^{2}+8 t$
a) Show that at time $\boldsymbol{t}=\mathbf{0}$, the particle is moving to the right.
b) Find all values of \boldsymbol{t} for which the particle is moving to the left.
c) What is the position of the particle at time $\boldsymbol{t}=\mathbf{3}$
d) When $\boldsymbol{t}=\mathbf{3}$, what is the total distance the particle has traveled?
\qquad

1. Answer is C.
Difficulty = 0.96 K

Find the derivative of $f(x)=4 x^{2}+7 x-5$

$$
f^{\prime}(x)=8 x+7
$$

2. Answer is D.

Difficulty $=0.95$ U
Given $f(x)=3 x^{2}-4 x+5$ find $f^{\prime}(x)$
$f^{\prime}(x)=6 x-4$
3. Answer is C.

Difficulty $=\mathbf{0 . 9 3} \mathbf{U}$
If $y=3 x^{3}-4 x^{2}+5$ find $\frac{d y}{d x}$
$\frac{d y}{d x}=3\left(3 x^{2}\right)-4(2 x)+0=9 x^{2}-8 x$
4. Answer is A.

Difficulty $=\mathbf{0 . 8 9} \mathbf{~ U ~}$
Find $\frac{d y}{d x}$ if $y=-3 x^{2}+6 x$

$$
\frac{d y}{d x}=-3\left(2 x^{1}\right)+6\left(1 x^{0}\right)=-6 x^{2}+6
$$

5. Answer is A.

Difficulty $=\mathbf{0 . 8 4} \mathrm{K}$
Find $f^{\prime}(x)$ if $f(x)=3$
$f^{\prime}(x)=0$
6. Answer is A.

Difficulty $=\mathbf{0 . 7 9} \mathbf{K}$
Given that r is any real number, determine $\frac{d}{d x}\left(x^{r}\right)$

$$
\frac{d y}{d x}=r x^{r-1}
$$

$$
\begin{aligned}
& \text { If } f(x)=\frac{3}{x} \text { then } f^{\prime}(x)= \\
& f(x)=\frac{3}{x}=3 x^{-1} \\
& f(x)=3\left(-1 x^{-2}\right)=-\frac{3}{x^{2}}
\end{aligned}
$$

8. Answer is A.

Difficulty $=\mathbf{0 . 6 4}$ U
Find $\frac{d y}{d x}$ if $y=2 \sqrt{x}$

$$
\begin{aligned}
& y=2 \sqrt{x}=2 x^{\frac{1}{2}} \\
& y=2\left(\frac{1}{2} x^{-\frac{1}{2}}\right)=\frac{1}{\sqrt{x}}
\end{aligned}
$$

9. Answer is C.

Difficulty $=0.63$ U
If $f(x)=\sqrt{x}$ determine the value of $f^{\prime}(x)$ at $(\mathbf{1 6 , 4)}$

$$
\begin{aligned}
& f(x)=\sqrt{x}=x^{\frac{1}{2}} \\
& f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}} \\
& f^{\prime}(16)=\frac{1}{2 \sqrt{16}}=\frac{1}{8}
\end{aligned}
$$

10. Answer is D.

Difficulty $=\mathbf{0 . 4 6} \mathrm{H}$
If $f(x)=\boldsymbol{k} \sqrt{\boldsymbol{x}}$ determine the value of the constant \boldsymbol{k} so that $\boldsymbol{f}^{\prime}(\mathbf{4})=\mathbf{6}$
$f(x)=\boldsymbol{k} \sqrt{x}=k x^{\frac{1}{2}}$
$f^{\prime}(x)=k\left(\frac{1}{2} x^{-\frac{1}{2}}\right)=\frac{k}{2 \sqrt{x}}$
$f^{\prime}(4)=\frac{k}{2 \sqrt{4}}=6 \quad \leftarrow f^{\prime}(4)=6$
$\frac{k}{4}=6$
$k=24$
11. Answer is C.

For the curve $\boldsymbol{y}=\boldsymbol{x}^{\boldsymbol{k}}(\boldsymbol{k} \neq \mathbf{0})$, the slope of the tangent is equal to $\mathbf{1 6} \boldsymbol{k}$ when $\boldsymbol{x}=\mathbf{2}$
Determine the value of \boldsymbol{k}

$$
\begin{aligned}
& y^{\prime}=k x^{k-1} \\
& y^{\prime}(2)=k(2)^{k-1}=16 k \\
&(2)^{k-1}=16 \\
&(2)^{k-1}=2^{4} \\
& k-1=4 \\
& k=5
\end{aligned}
$$

12. Answer is B.

Given $f(x)=\frac{5}{x^{2}}$ determine $f^{\prime}(x)$

$$
\begin{aligned}
& f(x)=\frac{5}{x^{2}}=5 x^{-2} \\
& f^{\prime}(x)=5\left(-2 x^{-3}\right)=-\frac{10}{x^{3}}
\end{aligned}
$$

13. Answer is B.

Given $y=\frac{1}{x^{3}}$ determine $\frac{d y}{d x}$

$$
\begin{aligned}
y & =\frac{1}{x^{3}}=x^{-3} \\
\frac{d y}{d x} & =-3 x^{-4}=-\frac{3}{x^{4}}
\end{aligned}
$$

14. Answer is B.

Find \boldsymbol{y}^{\prime} if $\boldsymbol{y}=\boldsymbol{x}^{\frac{3}{2}}$

$$
y^{\prime}=\frac{3}{2} x^{\frac{3}{2}-\frac{2}{2}}=\frac{3}{2} x^{\frac{1}{2}}
$$

15. Answer is A.

Which of the following represents the slope of the tangent to $f(x)$ at $x=2$
slope of the tangent at any point \boldsymbol{x} is $\boldsymbol{f}^{\prime}(\boldsymbol{x})$
slope of the tangent at $\boldsymbol{x}=\mathbf{2}$ is $\quad f^{\prime}(\mathbf{2})$
16. Answer is A.

Given $f(x)=\frac{\mathbf{1}}{\boldsymbol{x}}$ determine $f^{\prime}(\boldsymbol{x})$
$f(x)=\frac{1}{x}=x^{-1}$
$f^{\prime}(x)=-1 x^{-2}=-\frac{1}{x^{2}}$
17. Answer is A.

If $y=7$ determine $\frac{d y}{d x}$
$\frac{d y}{d x}=0$
18. Answer is A.

Evaluate the derivative of the function $f(x)=\mathbf{3} \boldsymbol{x}^{2}-\mathbf{2 x}-\mathbf{1}$ at the point where $\boldsymbol{x}=\mathbf{0}$

$$
\begin{aligned}
& f^{\prime}(x)=3(2 x)-2-0=6 x-2 \\
& f^{\prime}(0)=6(0)-2=-2
\end{aligned}
$$

19. Answer is D.

Evaluate the derivative of $f(x)=2 x^{2}-\mathbf{3 x + 2}$ at the point where $x=\mathbf{2}$

$$
f^{\prime}(x)=2(2 x)-3=4 x-3
$$

$$
f^{\prime}(2)=4(2)-3=5
$$

20. Answer is D.

Given $f(x)=(2 x-3)^{2}$ determine $f^{\prime}(x)$

$$
\begin{aligned}
& f(x)=4 x^{2}-12 x+9 \quad \leftarrow \text { or use } \text { chain rule if you know it } \\
& f^{\prime}(x)=8 x-12
\end{aligned}
$$

21. Answer is A.

$$
\begin{aligned}
& \text { Given the function } f(x)=\sqrt{2} \text { determine } f^{\prime}(x) \\
& f^{\prime}(x)=0
\end{aligned}
$$

22. Answer is A.

$$
\text { If } f(x)=\mathbf{6 g}(x) \text { then } f^{\prime}(x) \text { equals }
$$

$$
f^{\prime}(x)=6\left(g^{\prime}(x)\right)=6 g^{\prime}(x)
$$

23. Answer is C.

For what condition is $\boldsymbol{f}(\boldsymbol{x})$ increasing?
$y=f(x)$ is increasing $\Rightarrow f^{\prime}(x)$ is positive \leftarrow MUST know !!!
24. Answer is B.

Difficulty $=\mathbf{0 . 7 2} \mathbf{~ U}$
Find \boldsymbol{k} such that the function $f(x)=\boldsymbol{k} \boldsymbol{x}^{2}+\mathbf{1 2 x - 4}$ has a $\underbrace{\text { critical point }}$ at $\boldsymbol{x}=\mathbf{4}$ $f^{\prime}(x)=0$

$$
\begin{aligned}
& f^{\prime}(x)=2 k x+12 \\
& f^{\prime}(4)=2 k(4)+12=0 \\
& 8 k=-12 \\
& k=\frac{-12}{8}=-\frac{3}{2}
\end{aligned}
$$

25. Answer is C.

Difficulty $=\mathbf{0 . 5 8} \mathbf{~ U}$

Determine all values of \boldsymbol{x} such that the function
$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{3}-\mathbf{3} x^{2}+\mathbf{5}$ is $\underbrace{\text { decreasing. }}_{f^{\prime}(x)=\text { negative }}$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-6 x=0 \quad \text { (parabola opening up) } \\
& 3 x(x-2)=0 \\
& \hline x=0 \mid x=2 \leftarrow \text { zeros of } f^{\prime}(x)
\end{aligned}
$$

$\boldsymbol{f}^{\prime}(\boldsymbol{x})$ is negative on interval $\mathbf{0}<\boldsymbol{x}<\mathbf{2}$ so
$f(x)$ is decreasing on the interval $0<x<2$

26. Answer is B.

Find the \boldsymbol{x}-value of the point on the graph of $y=x^{2}-x$ where the $\underbrace{\text { slope of the tangent }}_{y^{\prime}=2}$ is 2

$$
\begin{array}{rlrl}
y^{\prime}=2 x-1 & =2 & y & =x^{2}-x \\
2 x & =3 & y\left(\frac{3}{2}\right) & =\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right) \\
x & =\frac{3}{2} & y\left(\frac{3}{2}\right) & =\frac{9}{4}-\frac{6}{4}=\frac{3}{4}
\end{array}
$$

At the point $\left.\underset{\substack{\frac{3}{2} \\ \underset{x}{2}}}{\frac{3}{4}}\right)$ the slope of the tangent $\boldsymbol{m}=\mathbf{2}$

Find all values of \boldsymbol{x} such that the function

$$
f(x)=2 x^{3}-3 x^{2} \text { is } \underbrace{\text { increasing }}_{f^{\prime}(x)>0}
$$

$$
\begin{aligned}
& f^{\prime}(x)=6 x^{2}-6 x=0 \leftarrow \text { opening } u p \\
& 6 x(x-1)=0 \\
& \hline x=0 \mid x=1 \leftarrow \text { zeros of } f^{\prime}(x)
\end{aligned}
$$

Function is increasing if $\boldsymbol{f}^{\prime}(\boldsymbol{x})>\mathbf{0}$

28. Answer is D.

Give all values of \boldsymbol{x} where the function $f(x)=x^{3}-3 x+4$ is increasing

$$
f^{\prime}(x)=3 x^{2}-3=0 \leftarrow \text { opening } u p
$$

$$
3\left(x^{2}-1\right)=0
$$

$$
3(x-1)(x+1)=0
$$

$$
\begin{array}{l|l}
\hline x=1 & x=-1
\end{array} \text { zeros of } f^{\prime}(x)
$$

Function is increasing if $\boldsymbol{f}^{\prime}(\boldsymbol{x})>\mathbf{0}$

Difficulty $=\mathbf{0 . 5 3} \mathbf{~ U}$

At which of the following values of \boldsymbol{x} is the function $g(x)=x^{3}-4 x^{2}$ decreasing ?

$$
\begin{aligned}
& g^{\prime}(x)=3 x^{2}-8 x=0 \leftarrow \text { opening } u p \\
& x(3 x-8)=0
\end{aligned}
$$

Function is decreasing if $g^{\prime}(x)<0$
$\overbrace{\overbrace{g(x) \text { decreasing }}^{\overbrace{0<x<\frac{8}{3}}}}^{g^{\prime}(x)<0}$
$\boldsymbol{x}=\mathbf{2}$ is only point where $\boldsymbol{g}(\boldsymbol{x})$ decreasing

Difficulty $=\mathbf{0 . 4 5} \mathbf{~ H}$

31. Answer is A.

Determine the x-values of the critical points for the function $f(x)=x^{3}+\mathbf{3} x^{2}-\mathbf{2 4 x}$

$$
\begin{aligned}
f(x)= & x^{3}+3 x^{2}-24 x \\
f^{\prime}(x)=3 x^{2}+6 x-24 & =0 \\
x^{2}+2 x-8 & =0 \\
(x+4)(x-2) & =0 \\
\frac{x=-4 \mid x=2}{x=x} & \leftarrow x \text {-values of the critical points }
\end{aligned}
$$

32.

Determine all values of \boldsymbol{x} such that the function
$f(x)=x^{4}-18 x^{2}+8$ is decreasing.
$f(x)=x^{4}-18 x^{2}+8$
$f^{\prime}(x)=4 x^{3}-36 x=0$
$4 x\left(x^{2}-9\right)=0$
$4 x(x-3)(x+3)=0$

| $x=-3$ | $x=0$ | $x=3$ |
| :--- | :--- | :--- | critical numbers

$f^{\prime}(x)=4 x(x-3)(x+3)<0$

$$
x<-3 \text { or } 0<x<3
$$

33.

Determine all values of \boldsymbol{x} such that the function $f(x)=x^{4}-8 x^{2}-9$ is increasing

$$
\begin{array}{|l}
\begin{array}{r}
f^{\prime}(x)=4 x^{3}-16 x=0 \\
4 x\left(x^{2}-4\right)=0 \\
4 x(x-2)(x+2)=0
\end{array} \\
\begin{array}{l|l|l|}
\hline x=0 & x=2 & x=-2 \\
\hline & \leftarrow \text { critical numbers } \\
f^{\prime}(x)=4 x(x-2)(x+2)>0 & \leftarrow f(x) \text { increasing }
\end{array}
\end{array}
$$

$\therefore f(x)$ is increasing on

0r
34.
a) Determine the \boldsymbol{x} values of the critical points of $f(x)=x^{4}-8 x^{2}$ $f^{\prime}(x)=4 x^{3}-16 x=0$
$4 x\left(x^{2}-4\right)=0$
$4 x(x-2)(x+2)=0$

$x=0$	$x=2$	$x=-2$

b) For what values of x is $f(x)=x^{4}-8 x^{2}$ decreasing?

$$
f^{\prime}(x)=4 x(x-2)(x+2)<0
$$

$f(x)$ is decreasing for:

$$
\begin{gathered}
x<-2 \text { or } 0<x<2 \\
\text { or }
\end{gathered}
$$

$$
-2<x<0 \quad \text { or } \quad x>2
$$

35.

Given the function $f(x)=2 x^{3}-3 x^{2}-12 x+4$, a) determine the coordinates of the critical points
b) determine where $\boldsymbol{f}(\boldsymbol{x})$ is increasing.

Sketch graph $f^{\prime}(x)=x^{2}-x-2$
$\boldsymbol{f}(\boldsymbol{x})$ is increasing whenever
$f^{\prime}(x)=x^{2}-x-2>0$

$x<-1$ or $x>2$ | $x=2$ | $x=-1$ |
| :--- | :--- |\leftarrow critical numbers

$f(2)=2(2)^{3}-3(2)^{2}-12(2)+4=-16$
$f(-1)=2(-1)^{3}-3(-1)^{2}-12(-1)+4=11$
Critical points are $(\mathbf{2},-\mathbf{1 6})$ and $(-\mathbf{1}, \mathbf{1 1})$
36. Answer is C.

$$
\text { Difficulty }=\mathbf{0 . 4 9} \mathbf{~ U}
$$

For the function $f(x)=\frac{\mathbf{1}}{\mathbf{3}} x^{3}+\frac{\mathbf{1}}{\mathbf{2}} x^{2}-6 x$, find the x-coordinate of the critical point where the local minimum point occurs.

$$
\begin{array}{c|c}
f^{\prime}(x)=\frac{1}{3}\left(3 x^{2}\right)+\frac{1}{2}(2 x)-6(1) & f^{\prime \prime}(x)=2 x+1 \quad \text { (at critical numbers) } \\
f^{\prime}(x)=x^{2}+x-6=0 & \text { At } x=-3 \quad f(x) \text { is concave down } \rightarrow \text { Max } \\
(x+3)(x-2)=0 & f^{\prime \prime}(2)=2(2)+1=+5 \\
\hline x=-3 \mid x=2 & \leftarrow \text { critical numbers } \\
\text { At } x=2 \quad f(x) \text { is concave up } \rightarrow \text { Min }
\end{array}
$$

37. Answer is B.

Difficulty $=0.46$ U
Find the minimum value of the function $f(x)=2 x^{2}-12 x+6$

$$
\begin{array}{|c|c|l}
f(x)=\mathbf{2} x^{2}-\mathbf{1 2 x + 6} & f^{\prime \prime}(x)=\mathbf{4} \text { (positive) } & f(x)=\mathbf{2} x^{2}-\mathbf{1 2 x + 6} \\
f^{\prime}(x)=4 x-\mathbf{1 2 = 0} & \therefore \text { at critical number } x=\mathbf{3} & f(3)=\mathbf{2 (3)}-\mathbf{1 2 (3) + 6} \\
\mathbf{4 x = 1 2} & \text { there is a minimum } & f(\mathbf{3})=-\mathbf{1 2} \leftarrow \text { minimum value }
\end{array}
$$

38. Answer is B.

Difficulty $=\mathbf{0 . 4 5} \mathbf{~ U}$
Determine the minimum value of the function $f(x)=\mathbf{3} x^{2}-\mathbf{1 2 x}+\mathbf{1 3}$

$$
f^{\prime}(x)=6 x-12=0
$$

$$
6 x=12
$$

Critical number $\rightarrow \boldsymbol{x}=\mathbf{2}$
$f^{\prime \prime}(x)=6$ (positive)
\therefore concave up
$f(x)=3 x^{2}-12 x+13$
$f(2)=3(2)^{2}-12(2)+13=1 \leftarrow$ minimum value
Vertex of parabola $(\mathbf{2}, \mathbf{1})$
Parabola opens $\boldsymbol{u} \boldsymbol{p}$ so minimum value is $\mathbf{1}$

Determine the minimum value of the function $g(x)=2 x^{2}-12 x+25$
$\begin{aligned} f^{\prime}(x)=4 x-12 & =0 \\ 4 x & =12\end{aligned}$
Critical number $\rightarrow \boldsymbol{x}=\mathbf{3}$
$f^{\prime \prime}(x)=4$ (positive)
\therefore concave up
$f(x)=2 x^{2}-12 x+25$
$f(3)=2(3)^{2}-12(3)+25=7 \leftarrow$ minimum value
Vertex of parabola $(\mathbf{3}, \mathbf{7})$
Parabola opens $\boldsymbol{u} \boldsymbol{p}$ so minimum value is $\mathbf{7}$
40. Answer is B.

Difficulty $=\mathbf{0 . 4 3} \mathbf{~ U}$
Determine the minimum value of the function $y=\mathbf{3} \boldsymbol{x}^{2}-\mathbf{2 4 x}-\mathbf{7}$

$$
\begin{aligned}
f^{\prime}(x)=6 x-24 & =0 \\
6 x & =24
\end{aligned}
$$

$f(x)=3 x^{2}-24 x-7$
$f(4)=3(4)^{2}-24(4)-7=-55 \leftarrow$ minimum value
Critical number $\rightarrow \boldsymbol{x}=\mathbf{4}$

$$
f^{\prime \prime}(x)=6(\text { positive })
$$

\therefore concave up
Vertex of parabola ($\mathbf{4}, \mathbf{- 5 5}$)
Parabola opens $\boldsymbol{u} \boldsymbol{p}$ so minimum value is $\mathbf{- 5 5}$
41. Answer is C.

Difficulty $=\mathbf{0 . 4 1} \mathbf{~ U}$
Find the maximum value of the function $y=-13-6 x-x^{2}$

$$
\begin{aligned}
y^{\prime}=-2 x-6 & =0 \\
-6 & =2 x
\end{aligned}
$$

Critical number $\rightarrow-\mathbf{3}=\boldsymbol{x}$

$$
y^{\prime \prime}=-2 \text { (negative) }
$$

\therefore concave down

$$
\begin{aligned}
y & =-x^{2}-6 x-13 \\
y(-3) & =-(-3)^{2}-6(-3)-13=-4
\end{aligned}
$$

Vertex of parabola $(-\mathbf{3},-\mathbf{4})$
Parabola opens down so maximum value is $\mathbf{- 4}$

42. Answer is C.

$$
\text { Difficulty }=\mathbf{0 . 3 8} \mathbf{~ H}
$$

If $\boldsymbol{y}=\mathbf{2 a x}+\boldsymbol{b} \boldsymbol{x}^{\mathbf{2}}$ and \boldsymbol{a} and \boldsymbol{b} are positive constants, determine the minimum value of \boldsymbol{y}

Parabola opening $\boldsymbol{u p}$

$$
\begin{aligned}
y^{\prime}=2 a+2 b x & =0 \\
2 b x & =-2 a \\
x & =-\frac{a}{b}
\end{aligned}
$$

Find coordinates of vertex and \boldsymbol{y}-value is minimum

$$
y(x)=2 a x+b x^{2}
$$

$$
y\left(-\frac{a}{b}\right)=2 a\left(-\frac{a}{b}\right)+b\left(-\frac{a}{b}\right)^{2}
$$

$$
y\left(-\frac{a}{b}\right)=\frac{-2 a^{2}}{b}+\frac{a^{2}}{b}=-\frac{a^{2}}{b}
$$

$\operatorname{Vertex}(-\frac{a}{b}, \underbrace{-\frac{a^{2}}{b}}_{\text {minimum }})$

Determine the maximum value of the function $f(x)=-2 x^{2}-x+6$

$$
\begin{aligned}
f^{\prime}(x)=-4 x-1 & =0 \\
-1 & =4 x
\end{aligned}
$$

Critical number $\rightarrow-\frac{1}{4}=\boldsymbol{x}$
$f^{\prime \prime}(x)=-4$ (negative)
\therefore concave down
$f(x)=-2 x^{2}-x+6$
$f\left(-\frac{1}{4}\right)=-2\left(-\frac{1}{4}\right)^{2}-\left(-\frac{1}{4}\right)+6=6.125 \leftarrow$ maximum value
Vertex of parabola $\left(-\frac{1}{4}, \mathbf{6 . 1 2 5}\right)$
Parabola opens down so maximum value is $\mathbf{6 . 1 2 5}$
44. Answer is C.

Find the minimum value of the function $f(x)=2 x^{2}-\mathbf{1 2 x}+\mathbf{2 5}$

$$
\begin{aligned}
f^{\prime}(x)=4 x-12 & =0 \\
4 x & =12
\end{aligned}
$$

Critical number $\rightarrow \boldsymbol{x}=\mathbf{3}$

$$
f(3)=2(3)^{2}-12(3)+25=7 \leftarrow \text { minimum value }
$$

$f^{\prime \prime}(x)=4$ (positive)
\therefore concave up

$$
f(x)=2 x^{2}-12 x+25
$$

Vertex of parabola $(\mathbf{3}, \mathbf{7})$
Parabola opens $\boldsymbol{u} \boldsymbol{p}$ so minimum value is 7
45. Answer is A.

If $f(x)=x^{4}+\boldsymbol{k} x^{2}$ has a minimum at $x=1$, then determine the value of the constant \boldsymbol{k}

$$
f^{\prime}(x)=4 x^{3}+2 k x=0
$$

$$
4(1)^{3}+2 k(1)=0
$$

$$
4+2 k=0
$$

$$
2 k=-4
$$

$$
k=-2
$$

$f(x)=x^{4}-\mathbf{2} x^{2}$ has a local minimum at $(\mathbf{1},-\mathbf{1})$

46. Answer is D.

Determine the maximum value of the function $f(x)=\mathbf{2 - 1 8 x}-\mathbf{3} x^{2}$

$$
\begin{aligned}
f^{\prime}(x)=-6 x-18 & =0 \\
-18 & =6 x
\end{aligned}
$$

Critical number $\rightarrow-\mathbf{3}=\boldsymbol{x}$ $f^{\prime \prime}(x)=-6$ (negative)
\therefore concave down

$$
f(x)=2-18 x-3 x^{2}
$$

$$
f(-3)=2-18(-3)-3(-3)^{2}=29 \leftarrow \text { maximum value }
$$ Vertex of parabola $(-\mathbf{3}, \mathbf{2 9})$

Parabola opens down so maximum value is 29
47. Answer is D.

What is the maximum value of the function $f(x)=4+8 x-x^{2}$

$$
\begin{array}{|c|c}
f^{\prime}(x)=-2 x+8=0 & f(x)=4+8 x-x^{2} \\
8=2 x & f(4)=4+8(4)-(4)^{2}=20 \\
\text { Critical number } \rightarrow 4=x & \text { Vertex of parabola }(\mathbf{4}, \mathbf{2 0}) \\
f^{\prime \prime}(x)=-2 \text { (negative) } & \text { Parabola opens down so maximum value is } \mathbf{2 0} \\
\therefore \text { concave down } &
\end{array}
$$

Find the slope of the line tangent to the graph of $f(x)=x^{2}+\mathbf{3}$ at the point where $x=-1$

$$
\begin{aligned}
f(x) & =x^{2}+3 \\
f^{\prime}(x) & =2 x \\
f^{\prime}(-1) & =2(-1)=-2
\end{aligned}
$$

49. Answer is A.
Difficulty = 0.71 U

$$
\begin{aligned}
& \text { Find the slope of the tangent to } y=x^{3}-2 x^{2}+6 \text { at }(2,6) \\
& \qquad \begin{array}{l}
y^{\prime}(x)=3 x^{2}-4 x \\
y^{\prime}(2)=3(2)^{2}-4(2)=12-8=4
\end{array}
\end{aligned}
$$

50. Answer is C.

$$
\text { Difficulty }=\mathbf{0 . 7 1} \mathbf{~ U}
$$

Find the slope of the line tangent to the graph of $\boldsymbol{y}=\boldsymbol{x}^{3}-\mathbf{4} \boldsymbol{x}^{2}+\mathbf{2}$ at the point where $\boldsymbol{x}=\mathbf{2}$

$$
\begin{aligned}
& y^{\prime}(x)=3 x^{2}-8 x \\
& y^{\prime}(2)=3(2)^{2}-8(2)=12-16=-4
\end{aligned}
$$

51. Answer is C.

$$
\text { Difficulty }=\mathbf{0 . 7 0} \mathbf{~ H}
$$

If $y=-\mathbf{3 x + 1}$ is tangent to the curve $f(x)$ at $\boldsymbol{x}=\boldsymbol{a}$ which must be true?

$$
\underbrace{y=-3 x+1}_{\text {slope }=-3} \text { is } \underbrace{\text { tangent to the curve } f(x) \text { at } x=a}_{\text {then derivative of } f(x) \text { at } x=a \text { must be } f^{\prime}(a)=-3}
$$

52. Answer is B.

Difficulty $=\mathbf{0 . 6 9} \mathbf{~ U}$
Given the function $f(x)=3 x^{2}-4 x+3$ for what value(s) of \boldsymbol{x} is the slope of the tangent line equal to 2

$$
\begin{aligned}
f^{\prime}(x)=6 x-4 & =2 \leftarrow \text { slope } \\
6 x & =6 \\
x & =1
\end{aligned}
$$

Determine the slope of the line tangent to $y=\frac{6}{x}$ at $(2,3)$

$$
\begin{aligned}
& y(x)=\frac{6}{x}=6 x^{-1} \\
& y^{\prime}(x)=6\left(-1 x^{-2}\right)=-\frac{6}{x^{2}} \\
& y^{\prime}(2)=-\frac{6}{(2)^{2}}=-\frac{6}{4}=-\frac{3}{2}
\end{aligned}
$$

54. Answer is A.

Find the point on $y=2 x^{2}+\mathbf{6 x - 1}$ where the slope of the tangent line is $\mathbf{2}$

$$
\begin{gathered}
y^{\prime}(x)=4 x+6=2 \leftarrow \text { slope } \\
4 x=2-6 \\
x=-1
\end{gathered}
$$

When $\boldsymbol{x}=\mathbf{- 1}$

$$
\begin{aligned}
& y(x)= 2 x^{2}+6 x-1 \\
&= 2(-1)^{2}+6(-1)-1=-5 \\
& \quad \therefore \text { at point }(-1,-5)
\end{aligned}
$$

slope of the tangent line $=\mathbf{2}$

55. Answer is B.

Determine the slope of the line tangent to the graph of $y=\frac{1}{x}$ at $x=4$

$$
\begin{aligned}
& y(x)=\frac{1}{x}=x^{-1} \\
& y^{\prime}(x)=-1 x^{-2}=-\frac{1}{x^{2}} \\
& y^{\prime}(4)=-\frac{1}{(4)^{2}}=-\frac{1}{16}
\end{aligned}
$$

Find an equation of the line tangent to the graph of $\boldsymbol{y}=\boldsymbol{x}^{3}-\boldsymbol{3 x}^{2}+\mathbf{3 x + 2}$ at $(\mathbf{0}, \mathbf{2})$

$$
\begin{aligned}
& y(x)=x^{3}-3 x^{2}+3 x+2 \\
& y^{\prime}(x)=3 x^{2}-6 x+3 \\
& y^{\prime}(0)=3(0)^{2}-6(0)+3=3
\end{aligned}
$$

At point ($\mathbf{0}, \mathbf{2}$) slope $\boldsymbol{m}=\mathbf{3}$
so tangent line is $y=3 x+2$

57. Answer is B.

$$
\text { Difficulty }=\mathbf{0 . 5 4} \mathbf{~ H}
$$

At what point on the curve $y=x^{2}-4$ is the tangent parallel to the line $6 x+y=4$

When $\quad x=-3$

Line $6 x+y=4$	$y(x)=x^{2}-4$
$y=-6 x+4$	$y^{\prime}(x)=2 x=-6$
slope of line $m=-6 \rightarrow m$	
$2 x=-6$	
$x=-3$	

$$
\begin{aligned}
y(x) & =x^{2}-4 \\
y(-3) & =(-3)^{2}-4=5
\end{aligned}
$$

At point $(-\mathbf{3}, \mathbf{5})$ tangent line is parallel to the line $6 x+y=4$
58. Answer is A.

Difficulty $=0.53 \mathbf{U}$
Determine the slope of the line tangent to the graph of $f(x)=\sqrt{x}$ at $x=9$

$$
\begin{aligned}
& f(x)=\sqrt{x}=x^{\frac{1}{2}} \\
& f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}} \\
& f^{\prime}(9)=\frac{1}{2 \sqrt{9}}=\frac{1}{6}
\end{aligned}
$$

59. Answer is B.

Difficulty $=\mathbf{0 . 4 1} \mathbf{~ H}$
The line $\underbrace{\boldsymbol{y = - 4 x + 1 8}}_{\text {slope }=-4}$ is tangent to the parabola $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b x}$ at the point where $\underbrace{\boldsymbol{x}=\mathbf{3}}_{\boldsymbol{y}^{\prime}(3)=-4}$
If the parabola has a $\underbrace{\text { critical point }}_{y^{\prime}(x)=0}$ at $\underbrace{\boldsymbol{x}=\mathbf{2}}_{y^{\prime}(2)=0}$ determine the value of \boldsymbol{a}

$$
\begin{aligned}
& \text { Point of tangency }(3,6) \\
& y(x)=a x^{2}+b x \\
& y^{\prime}(x)=2 a x+b \\
& y^{\prime}(3)=2 a(3)+b=-4 \\
& 6 a+b=-4
\end{aligned}
$$

At critical point (2, ?)

$$
\begin{aligned}
& y(x)=a x^{2}+b x \\
& y^{\prime}(x)=2 a x+b \\
& y^{\prime}(2)=2 a(2)+b=0 \\
& 4 a+b=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solve system } \\
& \begin{array}{r}
\begin{array}{|l}
6 a+b=-4 \\
4 a+b=0
\end{array} \\
\Rightarrow \begin{array}{r}
6 a \neq \varnothing \\
-4 a>-4 \\
-4
\end{array} \\
\therefore \quad 2 a=-4 \\
a=-2
\end{array} \\
&
\end{aligned}
$$

What are the coordinates of the point on the graph of $\boldsymbol{y}=\sqrt{x}$ where the slope of the tangent is $\frac{1}{8}$

$$
\begin{aligned}
& y(x)=\sqrt{x}=x^{\frac{1}{2}} \\
& y^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}}=\frac{1}{8} \\
& 2 \sqrt{x}=8 \\
& \sqrt{x}=4 \\
& x=16
\end{aligned}
$$

$$
\text { When } \quad x=16
$$

$$
y(x)=\sqrt{x}
$$

$$
y(16)=\sqrt{16}=4 \Rightarrow(16,4)
$$

$$
\text { At point }(\mathbf{1 6 , 4)} \text { on the graph of } y=\sqrt{x}
$$

$$
\text { the slope of the tangent is } \frac{\mathbf{1}}{\mathbf{8}}
$$

61. Answer is C.

Determine the slope of the line tangent to the graph of $\boldsymbol{y}=\boldsymbol{x}^{3}-\boldsymbol{x}^{2}$ at the point where $\boldsymbol{x}=\mathbf{2}$

$$
\begin{aligned}
& y^{\prime}(x)=3 x^{2}-2 x \\
& y^{\prime}(2)=3(2)^{2}-2(2)=8
\end{aligned}
$$

62. Answer is C.

Determine the slope of the tangent line to $f(\boldsymbol{x})=-\frac{\mathbf{2}}{\boldsymbol{x}}$ at the point where $\boldsymbol{x}=\mathbf{2}$

$$
\begin{gathered}
f(x)=-\frac{2}{x}=-2 x^{-1} \\
f^{\prime}(x)=-2\left(-1 x^{-2}\right)=\frac{2}{x^{2}} \\
f^{\prime}(2)=\frac{2}{(2)^{2}}=\frac{2}{4}=\frac{1}{2}
\end{gathered}
$$

63. Answer is C.

What is the slope of the tangent line to the graph of $y=-x^{2}+2 x-3$ at the point $(2,-3)$

$$
\begin{aligned}
& y^{\prime}(x)=-2 x+2 \\
& y^{\prime}(2)=-2(2)+2=-2
\end{aligned}
$$

64. Answer is A.

What is the slope of the tangent line to the function $\boldsymbol{y}=\mathbf{3}-\boldsymbol{x}$

$$
\begin{aligned}
& y(x)=3-x \\
& y^{\prime}(x)=-1
\end{aligned}
$$

The original function is a straight line with slope - $\mathbf{1}$
65. Answer is E.

The equation of the normal line to the curve $\boldsymbol{y}=\boldsymbol{x}^{4}+\mathbf{3} \boldsymbol{x}^{3}+\mathbf{2}$ at the point where $\boldsymbol{x}=\mathbf{0}$ is

Point of tangency/normal
$y=x^{4}+3 x^{3}+2$
$y(0)=2$
(0,2)

Slope of tangent at $\boldsymbol{x}=\mathbf{0}$

$$
\begin{aligned}
& y=x^{4}+3 x^{3}+2 \\
& y^{\prime}=4 x^{3}+9 x^{2} \\
& y^{\prime}(0)=4 x^{3}+9 x^{2}=0 \quad \leftarrow \text { horizontal tangent at } x=0
\end{aligned}
$$

Slope of normal is undefined at $\boldsymbol{x}=\mathbf{0} \leftarrow$ Vertical line $\boldsymbol{x}=\mathbf{0}$
66. Answer is C.

The line \mathbf{L} is perpendicular to the parabola $\boldsymbol{y}=\boldsymbol{k} \boldsymbol{x}^{2}$ at the point $(\mathbf{1}, \mathbf{5})$ What is the equation of \mathbf{L}

$$
\begin{aligned}
& y=k x^{2} \\
& 5=k(1)^{2} \\
& 5=k \\
& y=5 x^{2} \\
& y^{\prime}=10 x \\
& y^{\prime}(1)=10(1)=10
\end{aligned}
$$

Slope of tangent at the
point $(\mathbf{1}, \mathbf{5})$ is $\mathbf{1 0}$

Slope of normal is $-\frac{1}{10}$
Equation of normal

$$
\begin{aligned}
& \text { Slope }= \frac{\text { rise }}{\text { run }}=\frac{-1}{10}=\frac{y-5}{x-1} \\
& 10 y-50=-x+1 \\
& x+10 y=51
\end{aligned}
$$

67. Answer is A.

If $\boldsymbol{x}+7 \boldsymbol{y}=\mathbf{2 9}$ is an equation of the line normal to the graph of f at the point $(\mathbf{1 , 4})$, then $f^{\prime}(\mathbf{1})=$

$$
y=-\frac{1}{7} x+\frac{29}{7}
$$

Slope of normal $=-\frac{1}{7}$ at the point $(1,4)$
$\therefore \boldsymbol{f}^{\prime}(\mathbf{1})=\mathbf{7} \leftarrow$ slope of tangent when $\boldsymbol{x}=\mathbf{1}$
Slope of tangent $=7$ at the point $(\mathbf{1 , 4})$
68. Answer is B.

The line perpendicular to the tangent of the curve represented by the equation $y=x^{2}+6 x+4$ at the point $(-2,-4)$ also intersects the curve at $\boldsymbol{x}=$

$$
\begin{aligned}
& y=x^{2}+6 x+4 \\
& y^{\prime}=2 x+6 \\
& y^{\prime}(-2)=2(-2)+6=2 \\
& \rightarrow \text { tangent } m=2 \text { at point }(-2,-4) \\
& \rightarrow \text { normal } m=-\frac{1}{2} \text { at point }(-2,-4)
\end{aligned}
$$

Equation of normal

$$
\begin{aligned}
m=\frac{-1}{2} & =\frac{y+4}{x+2} \\
2 y+8 & =-x-2 \\
2 y & =-x-10 \\
y & =-\frac{1}{2} x-5
\end{aligned}
$$

Normal curve intersection

$$
\begin{aligned}
&-\frac{1}{2} x-5=x^{2}+6 x+4 \\
& 0=x^{2}+6.5 x+9 \\
& 0=2 x^{2}+13 x+18 \\
& 0=(2 x+9)(x+2) \\
& \hline x=-\frac{9}{2} \\
& \hline
\end{aligned}
$$

69. Answer is D.

An equation of the line normal to the graph of $\boldsymbol{y}=\boldsymbol{x}^{4}-\mathbf{3} \boldsymbol{x}^{2}+\mathbf{1}$ at the point where $\boldsymbol{x}=\mathbf{1}$ is

$$
\begin{aligned}
& y=x^{4}-3 x^{2}+1 \\
& y^{\prime}=4 x^{3}-6 x \\
& y^{\prime}(1)=4(1)^{3}-6(1)=-2 \\
& \text { Slope of tangent to } \rightarrow \\
& \text { graph at } \boldsymbol{x}=\mathbf{1} \\
& y=x^{4}-3 x^{2}+1 \\
& y(1)=(1)^{4}-3(1)^{2}+1=-1 \\
& \text { Point of tangency (} \mathbf{1}, \mathbf{- 1} \text {) } \\
& \text { Slope of normal is } \boldsymbol{m}=\frac{\mathbf{1}}{\mathbf{2}} \\
& \text { Equation of normal at (} \mathbf{1 , - 1} \text {) } \\
& \begin{array}{r}
\text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{1}{2}=\frac{y+1}{x-1} \\
2 y+2=x-1
\end{array} \\
& -x+2 y+3=0 \\
& x-2 y-3=0
\end{aligned}
$$

70. Answer is A.

An equation of the line normal to the graph of $\boldsymbol{y}=\mathbf{7} \boldsymbol{x}^{4}+\mathbf{2} \boldsymbol{x}^{3}+\boldsymbol{x}^{2}+\mathbf{2 x + 5}$ at the point where $\boldsymbol{x}=\mathbf{0}$ is

$$
\begin{aligned}
y & =7 x^{4}+2 x^{3}+x^{2}+2 x+5 \\
y^{\prime} & =28 x^{3}+6 x^{2}+2 x+2 \\
y^{\prime}(0) & =2
\end{aligned}
$$

Slope of tangent $\boldsymbol{m}=\frac{2}{1}$
Slope of normal $\boldsymbol{m}=-\frac{1}{2}$

Point/slope (0,5) $\quad \boldsymbol{m}=-\frac{1}{2}$
Equation of normal

$$
\begin{array}{r}
\text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{-1}{2}=\frac{y-5}{x-0} \\
2 y-10=-x \\
x+2 y=10
\end{array}
$$

71. Answer is B.

Find the equation of the line normal to $\boldsymbol{y}=\mathbf{4} \boldsymbol{x}^{2}+\mathbf{2 x + 9}$ at the point where $\boldsymbol{x}=\mathbf{1}$

72. Answer is C.

The coordinates of the point where the normal to the curve $y=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+x$ at $x=1$ intersects the y-axis are

$$
\begin{aligned}
y & =\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+x \\
y^{\prime} & =x^{2}+x+1 \\
y^{\prime}(1) & =(1)^{2}+(1)+1=3
\end{aligned}
$$

Slope of tangent $\boldsymbol{m}=\frac{3}{1}$
Slope of normal $\boldsymbol{m}=-\frac{1}{3}$

Point/slope (1, $\frac{11}{6}$) $m=-\frac{1}{3}$
Equation of normal
Slope $=\frac{\text { rise }}{\text { run }}=\frac{-1}{3}=\frac{y-\frac{11}{6}}{x-1}$
$3 y-\frac{33}{6}=-x+1$
$18 y-33=-6 x+6$

$$
6 x+18 y-39=0
$$

Intersects the y-axis $(\boldsymbol{x}=0)$

$$
\begin{aligned}
6 x+18 y-39 & =0 \\
18 y & =39 \\
6 y & =13 \\
y & =\frac{13}{6}
\end{aligned}
$$

Point

$$
\left(0, \frac{13}{6}\right)
$$

73. Answer is C.

The line normal to the curve $\boldsymbol{y}=\boldsymbol{x}^{2}$ at $(2,4)$ intersects the curve at $\boldsymbol{x}=$

$$
\begin{aligned}
& y=x^{2} \\
& y^{\prime}=2 x \\
& y^{\prime}(2)=2(2)=4 \\
& \text { Slope of tangent } m=\frac{4}{1} \\
& \text { Slope of normal } \boldsymbol{m}=-\frac{1}{4} \\
& \text { Point/slope (2,4) } \quad \boldsymbol{m}=-\frac{1}{4} \\
& \text { Equation of normal } \\
& \begin{aligned}
\text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{-1}{4} & =\frac{y-4}{x-2} \\
4 y-16 & =-x+2 \\
y & =-\frac{1}{4} x+\frac{9}{2}
\end{aligned} \\
& \text { Normal intersects the curve } \\
& x^{2}=y \quad y=-\frac{1}{4} x+\frac{9}{2} \\
& x^{2}=-\frac{1}{4} x+\frac{9}{2} \\
& 4 x^{2}=-x+18 \\
& 4 x^{2}+x-18=0 \\
& (4 x+9)(x-2)=0 \\
& \begin{array}{l|l}
\hline \hline x=-\frac{9}{4} & x=2 \\
\hline
\end{array}
\end{aligned}
$$

74. Find the value of \boldsymbol{x} at which the normal to the curve $\boldsymbol{y}=\boldsymbol{x}^{2}+\mathbf{1}$ at $\boldsymbol{x}=\mathbf{3}$ intersects the curve again.

$$
\begin{aligned}
y & =x^{2}+1 \\
y^{\prime} & =2 x \\
y^{\prime}(3) & =2(3)=6
\end{aligned}
$$

Slope of tangent $\boldsymbol{m}=\frac{6}{1}$
Slope of normal $\boldsymbol{m}=-\frac{1}{6}$

Point/slope $(3,10) \quad m=-\frac{1}{6}$
Equation of normal

$$
\begin{aligned}
\text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{-1}{6} & =\frac{y-10}{x-3} \\
6 y-60 & =-x+3 \\
y & =-\frac{1}{6} x+\frac{63}{6}
\end{aligned}
$$

Intersects the curve again

$$
\begin{gathered}
1+x^{2}=y \quad y=-\frac{1}{6} x+\frac{63}{6} \\
1+x^{2}=-\frac{1}{6} x+\frac{63}{6} \\
6+6 x^{2}=-x+63 \\
6 x^{2}+x-57=0 \\
(6 x+19)(x-3)=0 \\
x=-\frac{19}{6}
\end{gathered}
$$

75. The line normal to the function $\boldsymbol{f}(\boldsymbol{x})=\mathbf{4}-\boldsymbol{x}^{2}$ at $\boldsymbol{x}=\mathbf{- 1}$ intersects the curve again. Find the value of the function at that point.

$$
\begin{aligned}
f(x) & =4-x^{2} \\
f^{\prime}(x) & =-2 x \\
f^{\prime}(-1) & =-2(-1)=2
\end{aligned}
$$

Slope of tangent $\boldsymbol{m}=\frac{2}{1}$
Slope of normal $\boldsymbol{m}=-\frac{1}{2}$

Point/slope $(-1,3) \quad m=-\frac{1}{2}$
Equation of normal

$$
\left.\begin{array}{l}
\text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{-1}{2}=\frac{y-3}{x+1} \\
2 y-6=-x-1 \\
y=-\frac{1}{2} x+\frac{5}{2}
\end{array}\right\} \begin{aligned}
f\left(\frac{3}{2}\right)=4-\left(\frac{3}{2}\right)^{2}=\frac{16}{4}-\frac{9}{4}=\frac{7}{4}
\end{aligned}
$$

Intersects the curve again

$$
\begin{array}{rl}
4-x^{2}=y & y=-\frac{1}{2} x+\frac{5}{2} \\
4-x^{2} & =-\frac{1}{2} x+\frac{5}{2} \\
8-2 x^{2} & =-x+5 \\
0 & =2 x^{2}-x-3 \\
0 & =(2 x-3)(x+1) \\
\leftarrow & x=\frac{3}{2} \\
\hline & x=-1
\end{array}
$$

x	-4	-3	-2	-1	0	1	2	3	4
$g^{\prime}(x)$	2	3	0	-3	-2	-1	0	3	2

The derivative \boldsymbol{g}^{\prime} of a function \boldsymbol{g} is continuous and has exactly two zeros. Selected values of \boldsymbol{g}^{\prime} are given in the table. If the domain of \boldsymbol{g} is the set of all real numbers, then \boldsymbol{g} is decreasing on which of the following intervals ?
$\boldsymbol{g}(\boldsymbol{x})$ is decreasing whenever
$g^{\prime}(x)<0 \rightarrow-2<g<2$

77. Answer is E.

Given the function shown above, how many of the following statements are true ?
I. $f^{\prime}(b)=0$
II. $f^{\prime \prime}(a)<0$
III. $f^{\prime \prime}(c)<0$
IV. $\boldsymbol{f}^{\prime \prime}(b)>0$

I. $\boldsymbol{f}^{\prime}(\boldsymbol{b})=\mathbf{0} \quad$ True, minimum point, horizontal tangent
II. $\boldsymbol{f}^{\prime \prime}(\boldsymbol{a})<\mathbf{0}$ $\boldsymbol{\square}$ True, concave downwards
III. $\boldsymbol{f}^{\prime \prime}(\boldsymbol{c})<\mathbf{0}$ True, concave downwards
IV. $\boldsymbol{f}^{\prime \prime}(\boldsymbol{b})>\mathbf{0}$ True, concave upwards
78. Answer is B.

If \boldsymbol{y} is a function of \boldsymbol{x} such that $\boldsymbol{y}^{\prime}>\boldsymbol{0}$ for all \boldsymbol{x} and $\boldsymbol{y}^{\prime \prime}<\mathbf{0}$ for all \boldsymbol{x}, which of the following could be part of the graph of $f(x)$
$y^{\prime}>0 \rightarrow f(x)$ increasing
$y^{\prime \prime}<0 \rightarrow f(x)$ concave downwards
$\therefore f(x) \rightarrow$ increasing and concave downwards

79. Answer is C.
Use the graph on the right
for this and the next two questions.
At which labelled point do both
$\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ equal zero?

$$
\begin{aligned}
& \frac{d y}{d x}=0 \rightarrow \text { horizontal tangent } \\
& \frac{d^{2} y}{d x^{2}}=0 \rightarrow \text { possible } \text { change concavity } \\
& \text { Point } \mathrm{R} \rightarrow \text { inflection point fits }
\end{aligned}
$$

80. Answer is D.

At which labelled point is $\frac{d y}{d x}$ positive and $\frac{d^{2} y}{d x^{2}}$ equal to zero?

$$
\begin{aligned}
& \frac{d y}{d x}=\text { positive } \rightarrow \text { function increasing } \\
& \frac{d^{2} y}{d x^{2}}=0 \rightarrow \text { possible change of concavity } \\
& \text { Point } \boxed{\mathrm{S}} \rightarrow \text { function increasing } \\
& \text { and inflection point }
\end{aligned}
$$

81. Answer is E.

At which labelled point is $\frac{d y}{d x}$ equal to zero and $\frac{d^{2} y}{d x^{2}}$ negative ?
$\frac{d y}{d x}=0 \quad \rightarrow$ horizontal tangent
$\frac{d^{2} y}{d x^{2}}=$ negative \rightarrow concave down Point $\mathbf{T} \rightarrow$ maximum point

82. Answer is A.

At which point on the graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$
is $\boldsymbol{f}^{\prime}(\boldsymbol{x})<\mathbf{0}$ and $\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})>0$
$\boldsymbol{f}^{\prime}(\boldsymbol{x})<\mathbf{0} \rightarrow$ function decreasing
$f^{\prime \prime}(x)>0 \rightarrow$ concave upwards
Point \triangle A function decreasing/concave up

83. Answer is B.

The graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ is shown in the diagram. On which of the following intervals are $\frac{d y}{d x}>0$ and $\frac{\boldsymbol{d}^{2} y}{d^{2}}<0$
I. $a<x<b$
II. $b<x<c$
III. $c<x<d$

$\frac{d^{2} y}{d x^{2}}<\mathbf{0} \rightarrow$ concave downwards
84. Answer is D.

Difficulty $=\mathbf{0 . 3 3}$
The graph of a twice-differentiable function f is shown in the figure on the right. Which of the following is true?

$$
\begin{aligned}
& f(\mathbf{1})=\mathbf{0} \quad \rightarrow \boldsymbol{x} \text {-intercept } \\
& f^{\prime}(\mathbf{1})=\text { positive } \rightarrow \text { function is increasing } \\
& f^{\prime \prime}(\mathbf{1})=\text { negative } \rightarrow \text { function is concave down } \\
& \therefore \underbrace{f^{\prime \prime}(\mathbf{1})}_{\text {negative }}<\underbrace{f(\mathbf{1})}_{\text {zero }}<\underbrace{f^{\prime}(\mathbf{1})}_{\text {positive }}
\end{aligned}
$$

85. Answer is B

At which of the five points on the graph in the figure at the right are
$\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ both negative?
$\frac{d y}{d x}$ negative \rightarrow function is decreasing
$\frac{d^{2} y}{d x^{2}}$ negative \rightarrow function is concave down

Point $\boldsymbol{B} \rightarrow$ function is decreasing/concave down
86. Answer is A.
The graph of the derivative of a twice
differentiable function \boldsymbol{f} is shown in
the graph. If $\boldsymbol{f}(\mathbf{1})=\mathbf{- 2}$ which of the
following is true?

New twist \rightarrow be careful !!!
$\boldsymbol{f}^{\prime \prime}(\mathbf{2})>0$ (positive) \leftarrow concave up
$\boldsymbol{f}^{\prime}(\mathbf{2})=\mathbf{0}$ (zero) \leftarrow minimum point
$\boldsymbol{f}(\mathbf{1})=\mathbf{- 2}$ and \boldsymbol{f} value is decreasing
between $\mathbf{1}<\boldsymbol{x}<\mathbf{2}$ until minimum point $f(2)<-2$ (negative)

$$
f(2)<f^{\prime}(2)<f^{\prime \prime}(2)
$$

87. Answer is E.

At which point on the graph of $\boldsymbol{y}=\boldsymbol{g}(\boldsymbol{x})$ on the right is $\boldsymbol{g}^{\prime}(\boldsymbol{x})=\mathbf{0}$ and $\boldsymbol{g}^{\prime \prime}(\boldsymbol{x})<\mathbf{0}$

$$
\begin{aligned}
& g^{\prime}(x)=\mathbf{0} \leftarrow \text { horizontal tangent } \\
& g^{\prime \prime}(x)<\mathbf{0} \leftarrow \text { concave down } \\
& \text { Point } \mathbf{E} \text { is the only point }
\end{aligned}
$$

88. Answer is E.

The graph of a function \boldsymbol{f} is shown. At which of the marked points are both \boldsymbol{f}^{\prime} and $\boldsymbol{f}^{\prime \prime}$ positive ?
\boldsymbol{f}^{\prime} positive \leftarrow function increasing
$f^{\prime \prime}$ positive \leftarrow concave up

Point \boxed{E} is the only point
89. Answer is A.

The graph of \boldsymbol{f} is shown in the diagram and \boldsymbol{f} is twice differentiable. Which of the following has the smallest value?
I. $f(-1)$
II. $f^{\prime}(-1)$
III. $f^{\prime \prime}(-1)$
I. $\boldsymbol{f (} \mathbf{- 1)}=\mathbf{0} \rightarrow \boldsymbol{x}$-intercept ${ }^{* * *}$ smallest value

II. $f^{\prime}(-\mathbf{1})=$ positive \rightarrow function increasing
III. $f^{\prime \prime}(-1)=$ positive \rightarrow concave upwards
90. Answer is A.

The graph of \boldsymbol{f} is shown on the right and \boldsymbol{f} is twice differentiable. Which of the following has the largest value $f(0), f^{\prime}(0)$ or $f^{\prime \prime}(0)$
$f(\mathbf{0})=\mathbf{0} \rightarrow \boldsymbol{x}$-intercept
$f^{\prime}(0)=$ negative \rightarrow function decreasing
$f^{\prime \prime}(0)=$ negative \rightarrow function concave down
$\therefore f(0)$ has the largest value

91. Answer is D.

The graph of \boldsymbol{g}, a twice-differentiable function is shown in the diagram. Choose the correct order for the values of $\boldsymbol{g}(\mathbf{1}), g^{\prime}(\mathbf{1})$ and $g^{\prime \prime}(\mathbf{1})$

$$
\begin{aligned}
g(1) & =0
\end{aligned} \rightarrow x \text {-intercept } \quad \begin{aligned}
& g^{\prime \prime}(1)=\text { negative } \rightarrow \text { function decreasing } \\
& g^{\prime \prime}(1)=\text { positive } \rightarrow \text { function concave up } \\
& \therefore \quad \underbrace{g^{\prime}(1)}_{\text {negative }}<\underbrace{g(1)}_{\text {zero }}<\underbrace{g^{\prime \prime}(1)}_{\text {positive }}
\end{aligned}
$$

92.

Derivatives of	$y=e^{u}$	and
	$y^{\prime}=e^{u} \frac{d u}{d x}$	

93. Answer is A.

$$
\begin{aligned}
& \text { If } f(x)=\ln x^{3} \text { then } f^{\prime \prime}(3)= \\
& f(x)=3 \ln x \\
& f^{\prime}(x)=\frac{3}{x}=3 x^{-1} \\
& f^{\prime \prime}(x)=3\left(-1 x^{-2}\right)=\frac{-3}{x^{2}} \\
& f^{\prime \prime}(3)=\frac{-3}{3^{2}}=\frac{-1}{3}
\end{aligned}
$$

94. Answer is D.

$$
\begin{aligned}
& \text { If } \begin{aligned}
y & =e^{x}(x-1) \text { then } y^{\prime \prime}(0)= \\
y^{\prime} & =e^{x}(\mathbf{1})+(x-1) e^{x} \quad \leftarrow \text { product rule } \\
y^{\prime} & =e^{x}(\mathbf{1}+x-1) e^{x}=x e^{x} \\
y^{\prime \prime} & =x e^{x}+e^{x}(\mathbf{1})=e^{x}(x+1) \quad \leftarrow \text { product rule second time } \\
y^{\prime \prime}(0) & =e^{0}(0+1)=1
\end{aligned}
\end{aligned}
$$

95. Answer is E.

The domain of the function defined by $f(x)=\ln \left(x^{2}-x-6\right)$ is the set of all real numbers \boldsymbol{x} such that

$$
\begin{aligned}
& f(x)= \ln \left(x^{2}-x-6\right) \\
&(x+2)(x-3)>0 \\
& \quad x=-2 \mid x=3 \\
& x \text { endpoints } \\
& \hline-2<x \text { or } x>3 \\
& \hline
\end{aligned}
$$

Sketch parabola, to get intervals
96. Answer is D.

Find y^{\prime} given $y=\ln \left(x \sqrt{x^{2}+1}\right)$

$$
\begin{aligned}
& y=\ln x+\ln \left(x^{2}+1\right)^{\frac{1}{2}} \leftarrow \log \text { rules } \\
& y=\ln x+\frac{1}{2} \ln \left(x^{2}+1\right) \\
& y^{\prime}=\frac{1}{x}+\frac{\not 2 x}{\not 2\left(x^{2}+1\right)}=\frac{1}{x}\left(\frac{x^{2}+1}{x^{2}+1}\right)+\frac{x}{\left(x^{2}+1\right)}\left(\frac{x}{x}\right)=\frac{2 x^{2}+1}{x\left(x^{2}+1\right)}
\end{aligned}
$$

97. Answer is A.

$$
\log _{\frac{1}{b}} x=
$$

$$
\log _{\frac{1}{b}} \frac{x}{1}=\log _{\frac{b}{1}} \frac{1}{x}=\log _{b} x^{-1}=-\log _{b} x \leftarrow \log \text { shortcuts }
$$

98. Answer is A.

$$
\begin{aligned}
& \text { If } f(x)=2 e^{x}+e^{2 x} \text { then } f^{\prime \prime \prime}(0)= \\
& f^{\prime}(x)=2 e^{x}+e^{2 x}(2) \\
& f^{\prime \prime}(x)=2 e^{x}+2 e^{2 x}(2) \\
& f^{\prime \prime \prime}(x)=2 e^{x}+4 e^{2 x}(2)=2 e^{x}+8 e^{2 x} \\
& f^{\prime \prime \prime}(0)=2 e^{0}+8 e^{2(0)}=10
\end{aligned}
$$

99. Answer is B.

$$
\begin{aligned}
& \text { If } e^{g(x)}=2 x+1 \text { then } g^{\prime}(x)= \\
& g(x)=\ln (2 x+1) \leftarrow \ln \text { both sides } \\
& g^{\prime}(x)=\frac{2}{2 x+1}
\end{aligned}
$$

100. Answer is B.

$$
\begin{aligned}
& \text { If } f(x)=(x+1)^{\frac{3}{2}}-e^{x^{2}-9} \text { then } f^{\prime}(3)= \\
& f^{\prime}(x)=\frac{3}{2}(x+1)^{\frac{1}{2}}-e^{x^{2}-9}(2 x)=\frac{3}{2} \sqrt{x+1}-2 x e^{x^{2}-9} \\
& f^{\prime}(3)=\frac{3}{2} \sqrt{3+1}-2(3) e^{3^{2}-9}=3-6=-3
\end{aligned}
$$

101. Answer is A.

$$
\text { Simplify: } \quad \ln 2+\ln 5-\ln 8-\ln 15=
$$

$$
\ln (2)(5)-\ln 8-\ln 15=\ln \frac{10}{8}-\ln 15=\ln \frac{10}{8(15)}=\ln \frac{1}{12}=\ln 12^{-1}=-\ln 12
$$

102. Let $f(x)=\ln \left(x^{2}-x-6\right)$
a) the domain of $f(x)$ is
b) find $f(5)$
c) find $f^{\prime}(-3)$

$$
\begin{aligned}
f(x)= & \ln \left(x^{2}-x-6\right) \\
& \left.\frac{(x+2)(x-3)>0}{x=-2} \right\rvert\, x=3
\end{aligned}
$$

a) the domain of $f(x)$ is $x<-2$ or $x>3$
b) find $f(5)=\ln \left(5^{2}-5-6\right)=\ln 14$
c) find $f^{\prime}(x)=\frac{2 x-1}{x^{2}-x-6}$

$$
f^{\prime}(-3)=\frac{2(-3)-1}{(-3)^{2}-(-3)-6}=\frac{-7}{6}
$$

103. Answer is C.

$$
\begin{aligned}
& \text { If } y=f(x)=x^{3}+\ln x \text { then } y^{\prime}= \\
& f^{\prime}(x)=3 x^{2}+\frac{1}{x}
\end{aligned}
$$

104. Answer is D.

$$
\begin{aligned}
& \text { Solve: } \begin{aligned}
\log _{9} \boldsymbol{x}^{2} & =\mathbf{9} \\
\boldsymbol{x}^{2} & =\mathbf{9}^{9} \leftarrow \text { exponentiate both sides base } \mathbf{9} \\
\left(x^{2}\right)^{\frac{1}{2}} & =\left(\mathbf{9}^{9}\right)^{\frac{1}{2}} \leftarrow \text { exchange exponent order to square root first } \\
x & =\left(\mathbf{9}^{\frac{1}{2}}\right)^{9}=(\sqrt{\mathbf{9}})^{9}=(\pm 3)^{9}= \pm \mathbf{3}^{9}
\end{aligned}
\end{aligned}
$$

105. Answer is C.

$$
\begin{aligned}
& \text { If } f(x)=x \ln x \text { then } f^{\prime \prime \prime}(e)= \\
& f^{\prime}(x)=x\left(\frac{1}{x}\right)+\ln x(1)=1+\ln x \quad \leftarrow \text { product rule } \\
& f^{\prime \prime}(x)=0+\frac{1}{x}=x^{-1} \\
& f^{\prime \prime \prime}(x)=-1 x^{-2}=\frac{-1}{x^{2}} \\
& f^{\prime \prime \prime}(e)=-\frac{1}{e^{2}}
\end{aligned}
$$

106. Answer is E.

$$
\begin{aligned}
& \text { If } e^{g(x)}=\frac{x^{x}}{x^{2}-1} \text { then } g(x)= \\
& g(x)=\ln \frac{x^{x}}{x^{2}-1} \leftarrow \ln \text { both sides } \\
& g(x)=\ln x^{x}-\ln \left(x^{2}-1\right)=x \ln x-\ln \left(x^{2}-1\right)
\end{aligned}
$$

107. Answer is C.

Difficulty $=\mathbf{0 . 6 4}$

$$
\begin{aligned}
\text { If } \ln x-\ln \left(\frac{1}{x}\right) & =2, \text { then } x= \\
\ln \frac{x}{x} & =2 \\
\ln x^{2} & =2 \\
x^{2} & =e^{2} \\
x & =e
\end{aligned}
$$

108. Answer is C.

$$
\text { Difficulty }=\mathbf{0 . 8 8}
$$

If $y=x^{2} e^{x}$ then $\frac{d y}{d x}=$

$$
y^{\prime}=x^{2} e^{x}+e^{x}(2 x)=x e^{x}(x+2) \leftarrow \text { product rule }
$$

109. Answer is E.

$$
\begin{aligned}
& \text { If } y=\ln [(x+1)(x+2)], \text { then } \frac{d y}{d x}= \\
& y=\ln (x+1)+\ln (x+2) \leftarrow \log \text { rules } \\
& \frac{d y}{d x}=\frac{1}{x+1}+\frac{1}{x+2}
\end{aligned}
$$

110. Answer is E.

$$
\begin{array}{rlrl}
\hline \text { Solve: } & & 2 x=7^{1+\log _{9} 4} \\
& 2 x=\left(7^{1}\right)\left(7^{\log _{7} 4}\right) \\
& 2 x=(7)(\mathbf{4}) \\
& \mathbf{2 x}=\mathbf{2 8} \\
& x=14
\end{array}
$$

111. Answer is D.

What is \boldsymbol{x} when $\mathbf{6}=\boldsymbol{e}^{5 \boldsymbol{x}}$

$$
\begin{aligned}
& \ln 6=\operatorname{tn} e^{5 x} \leftarrow \ln \text { both sides } \\
& \frac{\ln 6}{5}=\frac{\vdots x}{5} \\
& \frac{\ln 6}{5}=x
\end{aligned}
$$

112. Answer is B.

$$
\ln _{e} 10=
$$

$$
\ln _{e} 10=\frac{1}{\ln _{10} e} \leftarrow \log \text { shortcut }
$$

113. Answer is B.

The tangent to the curve of $\boldsymbol{y}=\boldsymbol{x} \boldsymbol{e}^{-\boldsymbol{x}}$ is horizontal when \boldsymbol{x} is equal to

$$
\begin{aligned}
& y^{\prime}=x\left(-e^{-x}\right)+e^{-x}(\mathbf{1}) \leftarrow \text { product rule } \\
& \left.y^{\prime}=-x e^{-x}+e^{-x}=\frac{e^{-x}(1-x)=0}{} \quad \overline{e^{-x} \neq 0} \right\rvert\, x=1
\end{aligned}
$$

Critical number $\boldsymbol{x}=\mathbf{1}$ with horizontal tangent
114. Answer is C.

Find $\frac{d y}{d x}$ for $y=\ln \sqrt{x^{2}+4}$

$$
\begin{aligned}
& y=\ln \left(x^{2}+4\right)^{\frac{1}{2}}=\frac{1}{2} \ln \left(x^{2}+4\right) \\
& y^{\prime}=\frac{1}{\not 2}\left(\frac{\not 2 x}{x^{2}+4}\right)=\frac{x}{x^{2}+4}
\end{aligned}
$$

115. Answer is D.

Find an equation for the tangent line to the graph of $f(x)=\ln \left(x^{2}-\mathbf{1}\right)$ at the point where $x=2$

Slope of tangent	Point of tangency
$f(x)=\ln \left(x^{2}-1\right)$	$f(x)=\ln \left(x^{2}-1\right)$
$f^{\prime}(x)=\frac{2 x}{x^{2}-1}$	$f(2)=\ln \left(2^{2}-1\right)=\ln 3$
$f^{\prime}(2)=\frac{2(2)}{2^{2}-1}=\frac{4}{3}$	point $\rightarrow(2, \ln 3)$

Equation of tangent at (2, ln 3)

$$
\begin{gathered}
\frac{\text { rise }}{\text { run }}=\frac{4}{3}=\frac{y-\ln 3}{x-2} \\
4 x-8=3 y-3 \ln 3 \\
4 x-3 y=8-\ln 3^{3} \\
4 x-3 y=8-\ln 27
\end{gathered}
$$

116. Answer is B.

If $f(x)=e^{-2 x}$, then $f^{(4)}(x)=$

$$
\begin{aligned}
& f^{\prime}(x)=-2 e^{-2 x} \\
& f^{\prime \prime}(x)=4 e^{-2 x} \\
& f^{\prime \prime \prime}(x)=-8 e^{-2 x} \\
& f^{(4)}(x)=16 e^{-2 x}
\end{aligned}
$$

117. Answer is E.

$$
\begin{array}{|r|r|}
\hline \text { If } \log _{b}\left(3^{b}\right) & =\frac{b}{2}, \text { then } \quad b= \\
\log _{b} 3^{b} & =\frac{b}{2} \\
b \log _{b} 3 & =\frac{b}{2} \\
\frac{\log _{b} 3=\frac{1}{2}}{b} \log _{b} 3 & =\frac{b}{2 b} \\
\log _{b} 3 & =\frac{1}{2}
\end{array}
$$

118. Answer is E.

Find $\frac{d y}{d x}$ if $y=x \ln ^{3} x$

$$
\begin{aligned}
& y=x \ln ^{3} x=x(\ln x)^{3} \quad \leftarrow \text { rearrange exponent, means the same } \\
& y^{\prime}=x(3)(\ln x)^{2} \frac{1}{x}+(\ln x)^{3}(1) \leftarrow \text { product rule } \\
& y^{\prime}=3(\ln x)^{2}+(\ln x)^{3} \\
& y^{\prime}=\ln ^{2} x(3+\ln x)
\end{aligned}
$$

119. Answer is E.

$$
\begin{aligned}
& \text { If } y=\frac{e^{\ln u}}{u}, \text { then } \frac{d y}{d u}= \\
& y=\frac{e^{\ln u}}{u}=\frac{u}{u}=1 \quad \leftarrow \ln \text { shortcut } \\
& y^{\prime}=0
\end{aligned}
$$

120. Answer is D.

What is the slope of the tangent line to the curve $\boldsymbol{y}=\ln \frac{\boldsymbol{x}^{2}}{\sqrt{\boldsymbol{x}^{2}+1}}$ at the point where $\boldsymbol{x}=\mathbf{2}$

$$
\begin{aligned}
y & =\ln \frac{x^{2}}{\sqrt{x^{2}+1}}=\ln x^{2}-\ln \sqrt{x^{2}+1}=2 \ln x-\frac{1}{2} \ln \left(x^{2}+1\right) \\
y^{\prime} & =\frac{2}{x}-\frac{1}{p^{\prime}}\left(\frac{2 x}{x^{2}+1}\right)=\frac{2}{x}-\left(\frac{x}{x^{2}+1}\right) \\
y^{\prime}(2) & =\frac{2}{2}-\left(\frac{2}{2^{2}+1}\right)=1-\frac{2}{5}=\frac{3}{5}
\end{aligned}
$$

121. Answer is E.

$$
\begin{aligned}
& \text { What is the slope of the tangent line to the curve } y=\ln \left(x^{2}+1\right) \quad \text { when } x=3 \\
& y^{\prime}=\frac{2 x}{x^{2}+1} \\
& y^{\prime}(3)=\frac{2(3)}{3^{2}+1}=\frac{6}{10}=\frac{3}{5}
\end{aligned}
$$

122. Answer is B.

The derivative of $f(x)=\ln \left(x^{2}+2 x+1\right)$ is

$$
f^{\prime}(x)=\frac{2 x+2}{x^{2}+2 x+1}=\frac{2(x+1)}{(x+1)(x+1)}=\frac{2}{x+1}
$$

123. Answer is A.

$$
\begin{aligned}
& \text { If } f(x)=\ln \left(x+4+e^{-3 x}\right) \text { then } f^{\prime}(0)= \\
& f^{\prime}(x)=\frac{1-3 e^{-3 x}}{x+4+e^{-3 x}} \\
& f^{\prime}(0)=\frac{1-3 e^{0}}{0+4+e^{0}}=\frac{1-3}{0+4+1}=-\frac{2}{5}
\end{aligned}
$$

124. Answer is E.

$$
\begin{aligned}
\text { If } & 6 y=3 e^{2 x} \text { then } y^{\prime}= \\
& y=\frac{1}{2} e^{2 x} \\
& y^{\prime}=\frac{1}{2} e^{2 x}(2)=e^{2 x}
\end{aligned}
$$

125. Answer is B.

$$
\begin{aligned}
& \text { If } f(x)=x^{2} \ln x^{3} \text { then } f^{\prime}(x)= \\
& f^{\prime}(x)=x^{2}\left(\frac{3 x^{2}}{x^{3}}\right)+\ln x^{3}(2 x) \leftarrow \text { product rule } \\
& f^{\prime}(x)=3 x+6 x \ln x=3 x(1+2 \ln x)=3 x\left(1+\ln x^{2}\right)
\end{aligned}
$$

126. Answer is D.

$$
\text { If } y=e^{\frac{1}{2} \ln \left(x^{2}-4 x+7\right)} \text { then } \frac{d y}{d x}=
$$

$$
y=e^{\ln \left(x^{2}-4 x+7\right)^{\frac{1}{2}}} \quad \leftarrow \text { simplify logs }
$$

$$
y^{\prime}=\frac{1}{\not 2}\left(x^{2}-4 x+7\right)^{-\frac{1}{2}} \mathcal{L}^{\prime}(x-2)=\sqrt{\frac{x-2}{\sqrt{x^{2}-4 x+7}}}
$$

127. Answer is A.

Given the equation $\boldsymbol{y}=\mathbf{3} \boldsymbol{e}^{-2 \boldsymbol{x}}$ what is an equation of the normal line to the graph at $\boldsymbol{x}=\boldsymbol{\operatorname { l n }} \mathbf{2}$
Point on curve $\left(\ln 2, \frac{3}{4}\right)$

$$
\begin{aligned}
\text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{2}{3} & =\frac{y-\frac{3}{4}}{x-\ln 2} \\
3 y-\frac{9}{4} & =2(x-\ln 2) \\
3 y & =2(x-\ln 2)+\frac{9}{4} \\
y & =\frac{2}{3}(x-\ln 2)+\frac{9}{3(4)} \\
y & =\frac{2}{3}(x-\ln 2)+\frac{3}{4}
\end{aligned}
$$

128. Answer is B.

The equation of the normal line to the graph of $y=e^{2 x}$ at the point where $\frac{d y}{d x}=2$ is

$$
\begin{aligned}
& y=e^{2 x} \\
& y^{\prime}=2 e^{2 x}=2 \leftarrow \text { given } \\
& e^{2 x}=1 \\
& 2 x=\ln 1=0 \\
& x=0 \\
& y(0)=e^{2(0)}=1 \leftarrow \text { point }(0,1) \\
& \text { Slope of tangent }=\mathbf{2} \leftarrow \text { given } \\
& \text { Slope of normal }=-\frac{1}{2} \\
& \text { Point on curve (} \mathbf{0}, \mathbf{1} \text {) } \\
& \text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{-1}{2}=\frac{y-1}{x-0} \\
& 2 y-2=-x \\
& 2 y=-x+2 \\
& y=-\frac{1}{2} x+1
\end{aligned}
$$

129. Answer is B.

$$
\begin{aligned}
\text { Find } \begin{aligned}
\frac{d y}{d x} \text { for } y & =\ln (5-x)^{6} \\
y & =6 \ln (5-x) \leftarrow \log \text { shortcut } \\
y^{\prime} & =\frac{6(-1)}{5-x}=\frac{6}{x-5}
\end{aligned}
\end{aligned}
$$

130. Answer is B.

The slope of the line tangent to the graph of $\boldsymbol{y}=\ln \left(x^{2}\right)$ at $x=e^{2}$ is

$$
\begin{aligned}
y & =2 \ln x \\
y^{\prime} & =\frac{2}{x} \\
y^{\prime}\left(e^{2}\right) & =\frac{2}{e^{2}}
\end{aligned}
$$

131. Answer is D.

$$
\begin{aligned}
& \text { If } \log _{a} 2^{a}=\frac{a}{4} \quad \text { then } a= \\
& a \log _{a} 2=\frac{a}{4} \quad \leftarrow \text { log rule } \\
& \log _{a} 2=\frac{1}{4} \quad \leftarrow \text { divide both sides by } a \\
& 2=\boldsymbol{a}^{\frac{1}{4}} \\
& \leftarrow \text { exponentiate both sides base } a \text { then } 4^{\text {th }} \text { power both sides } \\
& 16=a
\end{aligned}
$$

132. Answer is B.

The slope of the line tangent to the graph of $y=\ln \left(\frac{x}{2}\right)$ at $x=4$ is

$$
\begin{aligned}
y & =\ln x-\ln 2 \\
y^{\prime} & =\frac{1}{x}-0 \\
y^{\prime}(4) & =\frac{1}{4}
\end{aligned}
$$

133. Answer is B.

$$
\text { If } f(x)=\log _{b} x \text { and } g(x)=b^{x} \text { then } f(g(x))=
$$

$$
f(g(x))=\log _{b}\left(b^{x}\right)=\log _{b} b^{x}=x \quad \leftarrow \log \text { rule }
$$

134. Answer is A.

Simplify: $\quad \ln e^{4}=$
$\ln e^{4}=\operatorname{tn} e^{4}=4 \leftarrow \log$ rule
135. Answer is A.

$$
\begin{aligned}
& \text { If } y=\ln \left(x^{x}\right) \text { then } y^{\prime}= \\
& \begin{array}{rlrl}
y & =x \ln x & & \leftarrow \text { rearrange by log rule } \\
y^{\prime} & =x\left(\frac{1}{x}\right)+(\ln x)(\mathbf{1}) & \leftarrow \text { product rule } \\
y^{\prime} & =1+\ln x & &
\end{array}
\end{aligned}
$$

136. Answer is E.

$$
\text { If } f(x)=x^{2} \ln x \text { then } f^{\prime}(x)=
$$

$$
\begin{aligned}
& f^{\prime}(x)=x^{2}\left(\frac{1}{x}\right)+\ln x(2 x) \quad \leftarrow \text { product rule } \\
& f^{\prime}(x)=x+2 x \ln x
\end{aligned}
$$

137. Answer is A.

$$
\text { Simplify: } \quad 2 \ln e^{5 x}=
$$

$$
2 \ln e^{5 x}=2 \operatorname{tn} e^{5 x}=2(5 x)=10 x
$$

138. Answer is C.

If $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{e}^{2 \boldsymbol{x}}$ and $\boldsymbol{g}(\boldsymbol{x})=\ln \boldsymbol{x}$ then the derivative of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{g}(\boldsymbol{x}))$ at $\boldsymbol{x}=\boldsymbol{e}$ is

$$
\begin{aligned}
y & =f(g(x))=e^{2 g(x)}=e^{2 \ln x}=e^{\operatorname{tn} x^{2}}=x^{2} \leftarrow \text { composite function and log rules } \\
y & =x^{2} \\
y^{\prime}(x) & =2 x \\
y^{\prime}(e) & =2 e
\end{aligned}
$$

139. Answer is A.

$$
\begin{aligned}
& \text { If } f(x)=e^{2 \ln x} \text { then } f^{\prime}(3)= \\
& \begin{aligned}
& f(x)=e^{2 \ln x}=e^{\operatorname{tn} x^{2}}=x^{2} \quad \leftarrow \text { and log rules } \\
& f(x)=x^{2} \\
& f^{\prime}(x)=2 x \\
& f^{\prime}(3)=2(3)=6
\end{aligned}
\end{aligned}
$$

140. Answer is D.

$$
\begin{aligned}
& \text { If } y=e^{8 x^{2}+1} \text { then } \frac{d y}{d x}= \\
& y^{\prime}=e^{8 x^{2}+1}(16 x)=16 x e^{8 x^{2}+1}
\end{aligned}
$$

141. Answer is A.
$\frac{d}{d x} \ln \left(\frac{1}{1-x}\right)=$

$$
\frac{d}{d x} \ln \left(\frac{1}{1-x}\right)=\frac{d}{d x}[\ln 1-\ln (1-x)]=\left[0-\frac{-1}{(1-x)}\right]=\frac{1}{1-x}
$$

142. Answer is B.

$$
\begin{aligned}
& \text { If } f(x)=x \ln \left(x^{2}\right) \text { then } f^{\prime}(x)= \\
& \begin{array}{l}
f(x)=2 x \ln x \\
f^{\prime}(x)=2 x\left(\frac{1}{x}\right)+\ln x(2)=2+2 \ln x=2+\ln \left(x^{2}\right) \leftarrow \text { product rule }
\end{array}
\end{aligned}
$$

143. Answer is B.
$\frac{d}{d x}\left(\ln e^{3 x}\right)=$

$$
\frac{d}{d x}\left(\ln e^{3 x}\right)=\frac{d}{d x}(3 x)=3
$$

144. Answer is C.

The slope of the line tangent to the graph of $y=\ln \sqrt{x}$ at $\left(e^{2}, \mathbf{1}\right)$ is

$$
\begin{aligned}
y & =\ln \sqrt{x}=\ln x^{\frac{1}{2}}=\frac{1}{2} \ln x \\
y^{\prime} & =\frac{1}{2 x} \\
y^{\prime}\left(e^{2}, 1\right) & =\frac{1}{2 e^{2}}
\end{aligned}
$$

145. Answer is E.

Difficulty $=\mathbf{0 . 3 0}$

$$
\begin{aligned}
& \text { If } f(x)=e^{3 \ln x^{2}} \text { then } f^{\prime}(x)= \\
& \quad f(x)=e^{3 \ln x^{2}}=e^{\ln \left(x^{2}\right)^{3}}=x^{6} \\
& f^{\prime}(x)=6 x^{5}
\end{aligned}
$$

146. Answer is B.

$$
\begin{aligned}
& \text { If } f(x)=\ln \left(x^{x}\right) \text { then } f^{\prime}\left(e^{2}\right)= \\
& \begin{aligned}
f(x) & =x \ln x \\
f^{\prime}(x) & =x\left(\frac{1}{x}\right)+\ln x(1)=1+\ln x
\end{aligned} \leftarrow \text { product rule } \\
& f^{\prime}\left(e^{2}\right)=1+\ln e^{2}=\mathbf{3}
\end{aligned}
$$

147. Answer is E.

If $\boldsymbol{y}=\boldsymbol{e}^{n \boldsymbol{x}}$ then $\frac{\boldsymbol{d}^{n} \boldsymbol{y}}{\boldsymbol{d x}^{\boldsymbol{n}}}$ (the $\boldsymbol{n}^{\text {th }}$ derivative of \boldsymbol{y} with respect to \boldsymbol{x}) is

$$
\begin{aligned}
& y^{\prime}=e^{n x}(n)=n e^{n x} \\
& y^{\prime \prime}=n e^{n x}(n)=n^{2} e^{n x} \\
& y^{\prime \prime \prime}=n^{2} e^{n x}(n)=n^{3} e^{n x} \quad \leftarrow \text { observe pattern } \\
& f^{(n)}(x)=n^{n} e^{n x}
\end{aligned}
$$

148. Answer is A.

The equation of the tangent to the curve $\ln \boldsymbol{y}=\mathbf{3} \boldsymbol{x}^{2}+\mathbf{6 x}$ at the point where $\boldsymbol{x}=\mathbf{0}$ is

$$
\begin{aligned}
\ln y & =3 x^{2}+6 x \\
y & =e^{3 x^{2}+6 x} \quad \leftarrow \text { exponentiate both sides base } e \\
y^{\prime} & =e^{3 x^{2}+6 x}(6 x+6)=(6 x+6) e^{3 x^{2}+6 x} \\
y^{\prime}(0) & =(6(0)+6) e^{3(0)^{2}+6(0)}=6 \\
y(0) & =e^{3(0)^{2}+6(0)}=1 \leftarrow \operatorname{point}(0,1)
\end{aligned}
$$

Equation of the tangent through ($\mathbf{0}, \mathbf{1}$)
Slope $=\frac{\text { rise }}{\text { run }}=\frac{6}{1}=\frac{y-1}{x-0}$

$$
\begin{aligned}
y-1 & =6 x \\
y & =6 x+1
\end{aligned}
$$

149. Answer is C.

If $y=x(\ln x)^{2}$ then $\frac{d y}{d x}=$

$$
\begin{aligned}
& y^{\prime}=\frac{\grave{x}}{1}\left[2(\ln x)^{1}\left(\frac{1}{x}\right)\right]+(\ln x)^{2}(1) \quad \leftarrow \text { product rule } \\
& y^{\prime}=2 \ln x+(\ln x)^{2}=(\ln x)(2+\ln x)
\end{aligned}
$$

150. Answer is A.

$$
\begin{aligned}
& \text { If } f(x)=3 x \ln x \text { then } f^{\prime}(x)= \\
& f^{\prime}(x)=3\left[\Varangle\left(\frac{1}{x}\right)+(\ln x)(1)\right] \leftarrow \text { product rule } \\
& f^{\prime}(x)=3[1+\ln x]=3+3 \ln x=3+\ln \left(x^{3}\right)
\end{aligned}
$$

151. Answer is B.

$$
\frac{d}{d x} \ln \left(\frac{1}{x^{2}-1}\right)=
$$

$$
\frac{d}{d x} \ln \left(\frac{1}{x^{2}-1}\right)=\frac{d}{d x}\left[\ln 1-\ln \left(x^{2}-1\right)\right]=0-\frac{2 x}{\left(x^{2}-1\right)}=\frac{-2 x}{x^{2}-1}
$$

152. Answer is C.

$$
\text { If } f(x)=\sqrt{e^{2 x}+1} \text { then } f^{\prime}(0)=
$$

$f(x)=\sqrt{e^{2 x}+1}=\left(e^{2 x}+1\right)^{\frac{1}{2}} \leftarrow$ rearrange
$f^{\prime}(x)=\frac{1}{z}\left(e^{2 x}+1\right)^{-\frac{1}{2}}\left(e^{2 x}\right)\left({ }^{2}\right) \leftarrow$ power rule and chain rule twice
$f^{\prime}(x)=\frac{e^{2 x}}{\sqrt{e^{2 x}+1}}$
$f^{\prime}(0)=\frac{e^{2(0)}}{\sqrt{e^{2(0)}+1}}=\frac{1}{\sqrt{2}}\left(\frac{\sqrt{2}}{\sqrt{2}}\right)=\frac{\sqrt{2}}{2}$
153. Answer is A.

$$
\begin{aligned}
& \text { If } f(x)=e^{x} \ln x \text { then } f^{\prime}(e)= \\
& f^{\prime}(x)=e^{x} \frac{1}{x}+(\ln x)\left(e^{x}\right)=\frac{e^{x}}{x}+e^{x} \ln x \quad \leftarrow \text { product rule } \\
& f^{\prime}(e)=\frac{e^{e}}{e^{1}}+e^{e} \ln e^{1}=e^{e-1}+e^{e}
\end{aligned}
$$

154. Answer is D.

$$
\begin{aligned}
& \text { If } y=\ln (3 x+5) \text { then } \frac{d^{2} y}{d x^{2}}= \\
& y^{\prime}=\frac{3}{3 x+5}=3(3 x+5)^{-1} \\
& y^{\prime \prime}=3(-1)(3 x+5)^{-2}(3)=\frac{-9}{(3 x+5)^{2}}
\end{aligned}
$$

155. Answer is E.

The slope of the line normal to the curve $\boldsymbol{y}=\boldsymbol{x} \boldsymbol{e}^{\boldsymbol{x}}$ at $\boldsymbol{x}=\mathbf{- 1}$ is

$$
\begin{aligned}
y(x) & =x e^{x} \\
y^{\prime}(x) & =x e^{x}+e^{x}(1) \quad \leftarrow \text { product rule } \\
y^{\prime}(-1) & =(-1) e^{(-1)}+e^{(-1)}=-\frac{1}{e}+\frac{1}{e}=\frac{0}{1} \leftarrow \text { slope of tangent }
\end{aligned}
$$

Slope of normal (negative reciprocal) $=\frac{\mathbf{- 1}}{\mathbf{0}} \quad \leftarrow$ undefined !!!
156. Answer is A.

$$
\begin{aligned}
\text { If } x=\frac{1}{2} \text { when } x & =\log _{y} x \text { then } y= \\
\frac{1}{2} & =\frac{\log \frac{1}{2}}{\log y} \leftarrow \log \text { rule } \\
\log y & =2 \log \frac{1}{2} \quad \leftarrow \text { cross multiply } \\
\log y & =\log \left(\frac{1}{2}\right)^{2} \\
y & =\left(\frac{1}{2}\right)^{2}=\frac{1}{4}
\end{aligned}
$$

157. Answer is B.

If $f(x)=\boldsymbol{e}^{x}$ and $\boldsymbol{g}(\boldsymbol{x})=\frac{1}{\boldsymbol{x}}$ then the derivative of $\boldsymbol{f}(\boldsymbol{g}(\boldsymbol{x})$), evaluated at $\boldsymbol{x}=2$ is

$$
f(x)=e^{x}
$$

$$
f(g(x))=e^{\frac{1}{x}}
$$

$$
\frac{d}{d x} f(g(x))=e^{\frac{1}{x}}\left(-1 x^{-2}\right)=\frac{-e^{\frac{1}{x}}}{x^{2}}
$$

$$
\frac{d}{d x} f(g(2))=\frac{-e^{\frac{1}{2}}}{(2)^{2}}=\frac{-\sqrt{e}}{4}
$$

158. Answer is A.

If the function $f(x)=\ln \left(x^{2}-1\right)$ then $\frac{f(7)-f(5)}{f^{\prime}(7)-f^{\prime}(5)}=$

$$
\begin{array}{l|l}
f(x)=\ln \left(x^{2}-1\right) \\
f^{\prime}(x)=\frac{2 x}{x^{2}-1} & \frac{f(7)-f(5)}{f^{\prime}(7)-f^{\prime}(5)}=\frac{\ln 48-\ln 24}{\frac{14}{48}-\frac{10}{24}}=\frac{\ln \frac{48}{24}}{\frac{-6}{48}}=\frac{\ln 2}{\frac{-1}{8}}=--8 \ln 2
\end{array}
$$

159. Answer is E.

$$
\begin{aligned}
& \text { If } f(x)=x^{e} e^{x} \text { then } f^{\prime}(x)= \\
& f^{\prime}(x)=x^{e} e^{x}+e^{x}\left(e x^{e-1}\right)=x^{e} e^{x}+e^{x} e x^{e-1}=x^{e} e^{x}+x^{e-1} e^{x+1} \leftarrow \text { product rule } \\
& f^{\prime}(x)=x^{e-1} e^{x}(x+e)=\frac{x^{e} e^{x}(x+e)}{x}
\end{aligned}
$$

160. Answer is E.

If $\quad y=x-1$ and $x>1$ then $\frac{d^{2}(\ln y)}{d x^{2}}=$

$$
\begin{aligned}
\ln y & =\ln (x-1) \quad \leftarrow \ln \text { both sides } \\
\frac{d(\ln y)}{d x} & =\frac{1}{x-1}=(x-1)^{-1} \\
\frac{d^{2}(\ln y)}{d x^{2}} & =-1(x-1)^{-2}=\frac{-1}{(x-1)^{2}}
\end{aligned}
$$

161. Answer is C.

The slope of the line normal to the curve $\boldsymbol{y}=\boldsymbol{x} \boldsymbol{e}^{\boldsymbol{x}^{3}}$ at $\boldsymbol{x}=\mathbf{1}$ is

$$
\begin{aligned}
& \qquad \begin{aligned}
y^{\prime}(x) & =x e^{x^{3}}\left(3 x^{2}\right)+e^{x^{3}}(1) \quad \leftarrow \text { product rule } \\
\text { slope of } \text { tangent } \rightarrow & y^{\prime}(\mathbf{1})=(\mathbf{1}) e^{\left(1^{3}\right.}\left(\mathbf{3}(\mathbf{1})^{2}\right)+e^{\left(1^{3}\right.}=e(3)+e=4 e \\
\text { slope of } n \text { normal } \rightarrow \text { negative reciprocal } & \frac{-1}{4 e}
\end{aligned}
\end{aligned}
$$

162. Answer is A.

$$
\begin{aligned}
& \text { If } \begin{aligned}
f(x) & =1+\ln (x+2) \text { then } f^{-1}(x)= \\
y & =1+\ln (x+2) \\
x & =1+\ln (y+2) \\
(x-1) & =\ln (y+2) \\
e^{(x-1)} & =y+2 \\
e^{x-1}-2 & =y \\
f^{-1}(x) & =e^{x-1}-2
\end{aligned}
\end{aligned}
$$

163. Answer is A.

If $f(x)=x \ln \sqrt{x}$ what is $f^{\prime}(x)=$

$$
\begin{aligned}
& f(x)=x \ln \sqrt{x}=x \ln x^{\frac{1}{2}}=\frac{1}{2} x \ln x \quad \leftarrow \ln \text { rules } \\
& f^{\prime}(x)=\frac{1}{2}\left[x\left(\frac{1}{x}\right)+\ln x(1)\right]=\frac{1}{2}[1+\ln x]=\frac{1}{2}+\ln x^{\frac{1}{2}}=\frac{1}{2}+\ln \sqrt{x} \leftarrow \text { product rule }
\end{aligned}
$$

164. Answer is A.

$$
\begin{aligned}
& \text { If } \begin{aligned}
y & =e^{4 x^{2}} \text { then } \frac{d(\ln y)}{d x}= \\
\ln y & =\operatorname{tn} e^{4 x^{2}} \\
\ln y & =4 x^{2} \\
\frac{d(\ln y)}{d x} & =8 x
\end{aligned}
\end{aligned}
$$

165. Answer is C.

$$
\begin{aligned}
& \text { If } f(x)=\ln \left(x^{2}-e^{2 x}\right) \text { then } f^{\prime}(1)= \\
& f^{\prime}(x)=\frac{2 x-2 e^{2 x}}{x^{2}-e^{2 x}} \\
& f^{\prime}(1)=\frac{2(1)-2 e^{2(1)}}{(1)^{2}-e^{2(1)}}=\frac{2-2 e^{2}}{1-e^{2}}=\frac{2\left(1-e^{2}\right)}{1-e^{2}}=2
\end{aligned}
$$

166. Answer is B.

Write the equation of the line perpendicular to the tangent of the curve represented by the equation $y=e^{x+1}$ at $x=0$

$$
\begin{array}{l|l}
\boldsymbol{y}^{\prime}=\boldsymbol{e}^{x+1} & \text { Equation of the normal at point }(\mathbf{0}, \boldsymbol{e})
\end{array}
$$

$$
y^{\prime}(0)=e^{0+1}=e
$$

Slope of tangent $=\boldsymbol{e}$
Slope of normal $=\frac{-\mathbf{1}}{e}$

$$
y(0)=e^{0+1}=e
$$

Point of tangency ($\mathbf{0}, \boldsymbol{e}$)

$$
\begin{aligned}
\text { Slope }=\frac{r i s e}{r u n}=\frac{-1}{e} & =\frac{y-e}{x-0} \\
e y-e^{2} & =-x \\
e y & =-x+e^{2} \\
y & =-\frac{1}{e} x+e
\end{aligned}
$$

167. Answer is B.

The second derivative of $\boldsymbol{f}(\boldsymbol{x})=\ln \boldsymbol{x}$ at $\boldsymbol{x}=\mathbf{3}$ is

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{x}=x^{-1} \\
& f^{\prime \prime}(x)=-x^{-2}=\frac{-1}{x^{2}} \\
& f^{\prime \prime}(3)=\frac{-1}{(3)^{2}}=\frac{-1}{9}
\end{aligned}
$$

168. Answer is A.

Find the equation of the line tangent to $\boldsymbol{f}(\boldsymbol{x})=\mathbf{2 x + 2 \boldsymbol { e } ^ { \boldsymbol { x } }}$ at $\boldsymbol{x}=\mathbf{0}$

$$
\begin{array}{l|l}
f(x)=2 x+2 e^{x} & \text { Point }(0,2) \quad m=4 \\
f^{\prime}(x)=2+2 e^{x} & \text { Line } \rightarrow y=4 x+2 \\
f^{\prime}(0)=2+2 e^{0}=4 &
\end{array}
$$

169. Answer is D.

$$
\begin{aligned}
\text { Find } y^{\prime \prime} \text { for } y & =x \ln x-3 x \\
y^{\prime} & =x\left(\frac{1}{x}\right)+\ln x(1)-3 \leftarrow \text { product rule } \\
y^{\prime} & =\ln x-2 \\
y^{\prime \prime} & =\frac{1}{x}
\end{aligned}
$$

170. Answer is A.

$$
\begin{aligned}
& \text { If } f(x)=e^{\frac{1}{x}}=e^{x^{-1}} \text { then } f^{\prime}(x)= \\
& f^{\prime}(x)=e^{\frac{1}{x}}\left(-1 x^{-2}\right)=\frac{-e^{\frac{1}{x}}}{x^{2}}
\end{aligned}
$$

171. Answer is B.

$$
\begin{aligned}
\text { If } f(x) & =\ln \sqrt{x} \text { then } f^{\prime \prime}(x)= \\
f(x) & =\ln x^{\frac{1}{2}}=\frac{1}{2} \ln x \\
f^{\prime}(x) & =\frac{1}{2}\left(\frac{1}{x}\right)=\frac{1}{2} x^{-1} \\
f^{\prime \prime}(x) & =\frac{1}{2}\left(-1 x^{-2}\right)=\frac{-1}{2 x^{2}}
\end{aligned}
$$

172. Answer is C.

$$
\text { Difficulty }=\mathbf{0 . 8 8}
$$

$$
\begin{aligned}
& \text { If } f(x)=(x-1)^{\frac{3}{2}}+\frac{e^{x-2}}{2} \text { then } f^{\prime}(2)= \\
& f^{\prime}(x)=\frac{3}{2}(x-1)^{\frac{1}{2}}+\frac{1}{2}(1) e^{x-2} \\
& f^{\prime}(2)=\frac{3}{2} \sqrt{(2-1)}+\frac{1}{2} e^{2-2}=\frac{3}{2}+\frac{1}{2} e^{0}=2
\end{aligned}
$$

173. Answer is C.

$$
\begin{aligned}
& \text { If } y=\ln \left(e^{-t^{2}}+10\right) \text { then } \frac{d y}{d x}= \\
& y^{\prime}=\frac{e^{-t^{2}}(-2 t)}{e^{-t^{2}}+10}=\frac{-2 t e^{-t^{2}}}{e^{-t^{2}}+10}
\end{aligned}
$$

174. Answer is B.

The function f defined by $f(x)=e^{3 x}+\mathbf{6} x^{2}+\mathbf{1}$ has a horizontal tangent at $x=$

$$
\begin{aligned}
f^{\prime}(x)=3 e^{3 x}+12 x & =0 \\
x & =-\mathbf{0 . 1 5 6 3 8 3 4}
\end{aligned}
$$

175. Answer is B.

The graph of the derivative of the function
\boldsymbol{f} is shown in the diagram. If $\boldsymbol{f}(\mathbf{0})=\mathbf{0}$
then which of the following is true?
CAREFUL $!!!\rightarrow$ graph of $f^{\prime}(x)$
$f^{\prime}(x)$ always positive $\leftarrow \boldsymbol{f}(\boldsymbol{x})$ is always increasing

$$
\boldsymbol{f}(\mathbf{0})=\mathbf{0} \leftarrow \text { given point }(\mathbf{0}, \mathbf{0}) \text { on } \boldsymbol{f}(\boldsymbol{x})
$$

$\boldsymbol{f}(-\mathbf{1})<\mathbf{0} \leftarrow \boldsymbol{f}(\boldsymbol{x})$ always increasing and through $(\mathbf{0}, \mathbf{0})$
$f^{\prime}(-\mathbf{1})=\mathbf{1} \leftarrow$ point $(-1,1)$ on $f^{\prime}(x)$ graph
$f^{\prime \prime}(-\mathbf{1})=\mathbf{0} \leftarrow$ horizontal tangent on $f^{\prime}(x)$ graph

$$
\underbrace{f(-1)<0}_{\text {negative }}<\underbrace{f^{\prime \prime}(-1)=0}_{\text {zero }}<\underbrace{f^{\prime}(-1)=1}_{\text {positive }}
$$

176. Answer is A.

The graph of the twice differentiable function $\boldsymbol{f}(\boldsymbol{x})$ is shown in the graph. Which of the following statements is true?

$f(2)=$ negative \rightarrow below x-axis
$f^{\prime}(2)=$ zero \rightarrow horizontal tangent
$f^{\prime \prime}(2)=$ positive \rightarrow concave upwards
$\therefore \underbrace{f(2)}_{\text {negative }}<\underbrace{f^{\prime}(2)}_{\text {zero }}<\underbrace{f^{\prime \prime}(2)}_{\text {positive }}$
177. Answer is D.

Simplify: $\frac{\ln 16}{3 \ln 4-3 \ln 2}=$

$$
\frac{\ln 16}{3 \ln 4-3 \ln 2}=\frac{\ln 2^{4}}{3 \ln 2^{2}-3 \ln 2}=\frac{4 \ln 2}{6 \ln 2-3 \ln 2}=\frac{4 \operatorname{tn} 2}{3 \operatorname{tn} 2}=\frac{4}{3}
$$

178. Answer is C.

Find the equation of the line perpendicular to the line tangent to $f(x)=\ln (\mathbf{3}-\mathbf{2 x})$ at $\boldsymbol{x}=\mathbf{1}$

$$
\begin{array}{l|r}
\begin{array}{l}
f(x)=\ln (3-2 x) \\
f^{\prime}(x)=\frac{-2}{3-2 x}
\end{array} & \text { Point }(1,0) \quad m=\frac{1}{2} \\
f^{\prime}(1)=\frac{-2}{3-2(1)}=-2 & \text { Normal line } \rightarrow \text { slope }=\frac{\text { rise }}{\text { run }}=\frac{1}{2}=\frac{y-0}{x-1} \\
2 y=x-1
\end{array}
$$

179.

Implicit Differentiation \rightarrow used when it is very difficult or impossible to isolate the variable \boldsymbol{y} in terms of \boldsymbol{x} Involves lots of chain rule/product rule operations.

180. Answer is A.

$$
\text { If } x y+y=3 \text { then } \frac{d y}{d x}=
$$

$$
\begin{aligned}
x y+y & =3 \\
x y^{\prime}+y+y^{\prime} & =0 \\
y^{\prime}[x+1] & =-y \\
\frac{d y}{d x} & =\frac{-y}{x+1}
\end{aligned}
$$

181. Answer is C.

If $x+y=x y$ then $\frac{d y}{d x}=$

$$
\begin{aligned}
1+y^{\prime} & =x y^{\prime}+y \\
y^{\prime}-x y^{\prime} & =y-1 \\
y^{\prime}(1-x) & =y-1 \\
y^{\prime} & =\frac{y-1}{1-x}=\frac{1-y}{x-1}
\end{aligned}
$$

182. Answer is C.

$$
\begin{aligned}
& \text { If } \begin{aligned}
y^{2}-2 x y & =16 \text { then } \frac{d y}{d x}= \\
2 y y^{\prime}-2\left[x y^{\prime}+y\right] & =0 \\
2 y y^{\prime}-2 x y^{\prime} & =2 y \\
2 y^{\prime}(y-x) & =2 y \\
2 y^{\prime}(y-x) & =\frac{2 y}{2(y-x)}=\frac{y}{y-x}
\end{aligned}
\end{aligned}
$$

183. Answer is A.

$$
\text { If } x^{2}+x y+y^{3}=0 \text { then in terms of } x \text { and } y, \frac{d y}{d x}=
$$

$$
\begin{aligned}
x^{2}+x y+y^{3} & =0 \\
2 x+\left[x y^{\prime}+y\right]+3 y^{2} y^{\prime} & =0 \\
2 x+x y^{\prime}+y+3 y^{2} y^{\prime} & =0 \\
y^{\prime}\left[x+3 y^{2}\right] & =-2 x-y \\
\frac{d y}{d x} & =\frac{-2 x-y}{x+3 y^{2}}=-\frac{2 x+y}{x+3 y^{2}}
\end{aligned}
$$

184. Answer is E.

$$
\begin{aligned}
& \text { If } x^{2}-2 x y+3 y^{2}=8 \text { then } \frac{d y}{d x}= \\
& \begin{aligned}
2 x-2\left[x y^{\prime}+y\right]+6 y y^{\prime} & =0 \\
2 x-2 x y^{\prime}-2 y+6 y y^{\prime} & =0 \\
y^{\prime}[6 y-2 x] & =2 y-2 x \\
\frac{d y}{d x} & =\frac{2 y-2 x}{6 y-2 x}=\frac{2(y-x)}{2(3 y-x)}=\frac{y-x}{3 y-x}
\end{aligned}
\end{aligned}
$$

185. Answer is B.

Find $\frac{d y}{d x}$ if $x^{2}+y^{2}=-\mathbf{2 x y}$

$$
\begin{aligned}
2 x+2 y y^{\prime} & =-2\left[x y^{\prime}+y\right] \\
2 x+2 y y^{\prime} & =-2 x y^{\prime}-2 y \\
2 y y^{\prime}+2 x y^{\prime} & =-2 y-2 x \\
y^{\prime}(2 y+2 x) & =-2(y+x) \\
y^{\prime} & =\frac{-2(y+x)}{2(y+x)}=-1
\end{aligned}
$$

186. Answer is B.

Find y^{\prime} if $y^{2}-3 x y+x^{2}=7$

$$
\begin{aligned}
y^{2}-3 x y+x^{2} & =7 \\
2 y y^{\prime}-3\left[x y^{\prime}+y\right]+2 x & =0 \\
2 y y^{\prime}-3 x y^{\prime}-3 y+2 x & =0 \\
y^{\prime}[2 y-3 x] & =3 y-2 x \\
y^{\prime} & =\frac{3 y-2 x}{2 y-3 x}
\end{aligned}
$$

187. Answer is C.

Given y is a differentiable function of x, find $\frac{d y}{d x}$ for $x^{3}-x y+y^{3}=1$

$$
\begin{aligned}
3 x^{2}-\left[x y^{\prime}+y\right]+3 y^{2} y^{\prime} & =0 \\
3 x^{2}-x y^{\prime}-y+3 y^{2} y^{\prime} & =0 \\
y^{\prime}\left[3 y^{2}-x\right] & =y-3 x^{2} \\
\frac{d y}{d x} & =\frac{y-3 x^{2}}{3 y^{2}-x}
\end{aligned}
$$

188. Answer is B.

$$
\begin{aligned}
& \text { If } \begin{array}{r}
y^{2}=x+y^{3} \text { then } y^{\prime}= \\
2 y y^{\prime}=1+3 y^{2} y^{\prime} \\
2 y y^{\prime}-3 y^{2} y^{\prime}=1 \\
y^{\prime}\left[2 y-3 y^{2}\right]=1 \\
y^{\prime}=\frac{1}{2 y-3 y^{2}}
\end{array}
\end{aligned}
$$

189. Answer is A.

Find $\frac{d y}{d x}$ for $2 x^{2}+x y+3 y^{2}=0$

$$
\begin{aligned}
4 x+\left[x y^{\prime}+y\right]+6 y y^{\prime} & =0 \\
x y^{\prime}+6 y y^{\prime} & =-4 x-y \\
y^{\prime}[x+6 y] & =-4 x-y \\
y^{\prime} & =-\frac{4 x+y}{x+6 y}
\end{aligned}
$$

190. Answer is B.

Given y is a differentiable function of x, find $\frac{d y}{d x}$ for $3 x^{2}-2 x y+5 y^{2}=1$

$$
\begin{aligned}
6 x-2\left[x y^{\prime}+y\right]+10 y y^{\prime} & =0 \\
6 x-2 x y^{\prime}-2 y+10 y y^{\prime} & =0 \\
y^{\prime}[10 y-2 x] & =2 y-6 x \\
y^{\prime} & =\frac{2(y-3 x)}{2(5 y-x)} \\
\frac{d y}{d x} & =\frac{y-3 x}{5 y-x}
\end{aligned}
$$

191. Answer is C.

$$
\begin{array}{|l}
\text { If } x^{2}+y^{3}=x^{3} y^{2}
\end{array} \text { then } \frac{d y}{d x}=, ~ \begin{aligned}
2 x+3 y^{2} y^{\prime} & =x^{3} 2 y y^{\prime}+y^{2}\left(3 x^{2}\right) \\
3 y^{2} y^{\prime}-2 x^{3} y y^{\prime} & =3 x^{2} y^{2}-2 x \\
y^{\prime}\left(3 y^{2}-2 x^{3} y\right) & =3 x^{2} y^{2}-2 x \\
y^{\prime} & =\frac{3 x^{2} y^{2}-2 x}{3 y^{2}-2 x^{3} y}
\end{aligned}
$$

192. Answer is A.
If $\quad x y^{2}-y^{3}=x^{2}-5$ then $\frac{d y}{d x}=$

$$
\begin{aligned}
{\left[x 2 y y^{\prime}+y^{2}\right]-3 y^{2} y^{\prime} } & =2 x-0 \\
2 x y y^{\prime}-3 y^{2} y^{\prime} & =2 x-y^{2} \\
y^{\prime}\left(2 x y-3 y^{2}\right) & =2 x-y^{2} \\
y^{\prime} & =\frac{2 x-y^{2}}{2 x y-3 y^{2}}=\frac{y^{2}-2 x}{3 y^{2}-2 x y}
\end{aligned}
$$

193. Answer is A.

Difficulty $=0.66$
If $x^{3}+\mathbf{3 x y}+\mathbf{2} y^{3}=\mathbf{1 7}$ then in terms of \boldsymbol{x} and $y \quad \frac{d y}{d x}=$

$$
\begin{aligned}
x^{3}+3 x y+2 y^{3} & =17 \\
3 x^{2}+3\left[x y^{\prime}+y\right]+6 y^{2} y^{\prime} & =0 \\
3 x^{2}+3 x y^{\prime}+3 y+6 y^{2} y^{\prime} & =0 \\
y^{\prime}\left[6 y^{2}+3 x\right] & =-3 x^{2}-3 y \\
\frac{d y}{d x} & =\frac{-3 x^{2}-3 y}{6 y^{2}+3 x}=\frac{-\not p\left(x^{2}+y\right)}{\nexists\left(2 y^{2}+x\right)}=-\frac{x^{2}+y}{x+2 y^{2}}
\end{aligned}
$$

194. Answer is E.

Find $\frac{d y}{d x}$ for $e^{y}=x y$

$$
\begin{aligned}
e^{y} y^{\prime} & =x y^{\prime}+y \\
e^{y} y^{\prime}-x y^{\prime} & =y \\
y^{\prime}\left(e^{y}-x\right) & =y \\
y^{\prime} & =\frac{y}{\underbrace{e^{y}}_{x y}-x}=\frac{y}{x y-x}
\end{aligned}
$$

195. Answer is D.

Find \boldsymbol{y}^{\prime} if $\ln \boldsymbol{x y}=\boldsymbol{x}+\boldsymbol{y}$

$$
\begin{aligned}
\ln x+\ln y & =x+y \\
\frac{1}{x}+\frac{y^{\prime}}{y} & =1+y^{\prime} \\
\frac{y^{\prime}}{y}-y^{\prime} & =1-\frac{1}{x} \\
y^{\prime}\left(\frac{1}{y}-1\right) & =\frac{x-1}{x} \\
y^{\prime} & =\left[\frac{\frac{x-1}{x}}{\frac{1-y}{y}}\right]=\left(\frac{x-1}{x}\right)\left(\frac{y}{1-y}\right)=\frac{x y-y}{x-x y}
\end{aligned}
$$

196. Answer is B.

$$
\begin{aligned}
& \text { Find } y^{\prime} \text { if } x e^{y}+1=x y \\
& \begin{array}{r}
{\left[x e^{y} y^{\prime}+e^{y}\right]+0=\left[x y^{\prime}+y\right]} \\
x e^{y} y^{\prime}-x y^{\prime}=y-e^{y} \\
y^{\prime}\left[x e^{y}-x\right]=y-e^{y} \\
y^{\prime}=\frac{y-e^{y}}{x e^{y}-x}
\end{array}
\end{aligned}
$$

197. Answer is C.

Consider the curve $\boldsymbol{x}+\boldsymbol{x y}+\mathbf{2} \boldsymbol{y}^{2}=\mathbf{6}$ The slope of the line tangent to the curve at the point $(2,1)$ is

$$
\begin{aligned}
1+\left[x y^{\prime}+y\right]+2(2) y y^{\prime} & =0 \\
1+x y^{\prime}+y+4 y y^{\prime} & =0 \\
y^{\prime}(x+4 y) & =-y-1 \\
y^{\prime} & =\frac{-y-1}{x+4 y} \\
y^{\prime}(2,1) & =\frac{-1-1}{2+4(1)}=\frac{-2}{6}=\frac{-1}{3}
\end{aligned}
$$

198. Answer is A.

The equation of the tangent to the curve $2 \boldsymbol{x}^{2}-\boldsymbol{y}^{4}=\mathbf{1}$ at the point $(-\mathbf{1}, \mathbf{1})$ is

$$
\begin{aligned}
2 x^{2}-y^{4} & =1 \\
4 x-4 y^{3} y^{\prime} & =0 \\
4 x & =4 y^{3} y^{\prime} \\
\frac{x}{y^{3}} & =y^{\prime}
\end{aligned}
$$

Slope of tangent at ($\mathbf{- 1 , 1} \mathbf{1})$

$$
y^{\prime}=\frac{x}{y^{3}}
$$

$$
y^{\prime}(-1,1)=\frac{-1}{(1)^{3}}=-1
$$

Equation of tangent at ($\mathbf{(1 , 1)}$
Slope $=\frac{\text { rise }}{\text { run }}=\frac{-1}{1}=\frac{y-1}{x+1}$ $y-1=-1 x-1$ $y=-x$
199. Answer is E.
If $y^{2}-2 x y=21$ then $\frac{d y}{d x}$ at the point $(2,-3)$ is

$$
\begin{aligned}
2 y y^{\prime}-2\left[x y^{\prime}+y\right] & =0 \\
2 y y^{\prime}-2 x y^{\prime}-2 y & =0 \\
y^{\prime}(2 y-2 x) & =2 y
\end{aligned}
$$

$$
y^{\prime}=\frac{z^{\prime} y}{\mathfrak{Z}^{\prime}(y-x)}=\frac{y}{y-x}
$$

$$
y^{\prime}(2,-3)=\frac{-3}{-3-2}=\frac{-3}{-5}=\frac{3}{5}
$$

200. Answer is A. Diagram is to help in the learning process only !

The slope of the curve $\boldsymbol{y}^{2}-\boldsymbol{x} \boldsymbol{y}-\mathbf{3 x}=\mathbf{1}$ at the point ($\mathbf{0}, \mathbf{- 1}$) is

$$
\begin{aligned}
2 y y^{\prime}-\left[x y^{\prime}+y(1)\right]-3 & =0 \\
2 y y^{\prime}-x y^{\prime}-y-3 & =0 \\
y^{\prime}[2 y-x] & =y+3 \\
y^{\prime} & =\frac{y+3}{2 y-x} \\
\frac{d y}{d x}(0,-1) & =\frac{-1+3}{2(-1)-0}=\frac{2}{-2}=-1
\end{aligned}
$$

201. Answer is B. Diagram is to help in the learning process only!

What is the slope of the line tangent to the curve $3 y^{2}-2 x^{2}=6-2 x y$ at the point $(3,2)$

$$
3 y^{2}-2 x^{2}=6-2 x y
$$

$$
6 y y^{\prime}-4 x=-2\left[x y^{\prime}+y\right]
$$

$$
6 y y^{\prime}-4 x=-2 x y^{\prime}-2 y
$$

$$
6 y y^{\prime}+2 x y^{\prime}=4 x-2 y
$$

$$
2 y^{\prime}(3 y+x)=2(2 x-y)
$$

$$
y^{\prime}=\frac{2 x-y}{3 y+x}
$$

$$
y^{\prime}(3,2)=\frac{2(3)-2}{3(2)+3}=\frac{4}{9}
$$

202. Answer is A. Diagram is to help in the learning process only!

$$
\begin{aligned}
& \text { The slope of the line tangent to the graph of } \\
& 3 x^{2}+5 \ln y=12 \text { at }(2,1) \text { is } \\
& \begin{aligned}
3 x^{2}+5 \ln y & =12 \\
6 x+5 \frac{y^{\prime}}{y} & =0 \\
6 x y+5 y^{\prime} & =0 \\
y^{\prime} & =\frac{-6 x y}{5} \\
y^{\prime}(2,1) & =\frac{-6(2)(1)}{5}=-\frac{12}{5}
\end{aligned}
\end{aligned}
$$

If $y=\ln \left(x^{2}+y^{2}\right)$ then the value of $\frac{d y}{d x}$ at the point $(1,0)$ is

$$
\begin{aligned}
y & =\ln \left(x^{2}+y^{2}\right) \\
y^{\prime} & =\frac{2 x+2 y y^{\prime}}{x^{2}+y^{2}} \\
y^{\prime}\left(x^{2}+y^{2}\right) & =2 x+2 y y^{\prime} \\
y^{\prime}\left(x^{2}+y^{2}\right)-2 y y^{\prime} & =2 x \\
y^{\prime}\left(x^{2}+y^{2}-2 y\right) & =2 x \\
y^{\prime} & =\frac{2 x}{x^{2}+y^{2}-2 y} \\
y^{\prime}(1,0) & =\frac{2(1)}{(1)^{2}+(0)^{2}-2(0)}=2
\end{aligned}
$$

204. Answer is B.

Consider the curve $5 \boldsymbol{x}-\boldsymbol{x} \boldsymbol{y}+\boldsymbol{y}^{2}=\mathbf{7}$ The slope of the line tangent to the curve at the point $(\mathbf{1}, \mathbf{2})$ is

$$
\begin{aligned}
5-\left[x y^{\prime}+y\right]+2 y y^{\prime} & =0 \\
5-x y^{\prime}-y+2 y y^{\prime} & =0 \\
2 y y^{\prime}-x y^{\prime} & =y-5 \\
y^{\prime}(2 y-x) & =y-5 \\
y^{\prime} & =\frac{y-5}{2 y-x} \\
y^{\prime}(1,2) & =\frac{2-5}{2(2)-1}=\frac{-3}{3}=-1
\end{aligned}
$$

205. Answer is A. Diagram is to help in the learning process only!

If $y^{2}+x y=6$ what is $\frac{d y}{d x}$ at the point $(-1,3)$

$$
\begin{aligned}
y^{2}+x y & =6 \\
2 y y^{\prime}+\left[x y^{\prime}+y\right] & =0 \\
2 y y^{\prime}+x y^{\prime}+y & =0 \\
y^{\prime}[2 y+x] & =-y \\
y^{\prime} & =\frac{-y}{2 y+x} \\
y^{\prime}(-1,3) & =\frac{-3}{2(3)+(-1)}=\frac{-3}{5}
\end{aligned}
$$

206. Answer is A.

The equation of the line tangent to the curve $\boldsymbol{y}^{2}-2 x-4 y=1$ at $(-2,1)$ is

$$
\left.\begin{aligned}
y^{2}-2 x-4 y & =1 \\
2 y y^{\prime}-2-4 y^{\prime} & =0 \\
y^{\prime}(2 y-4) & =2 \\
y^{\prime} & =\frac{2}{2(y-2)}=\frac{1}{y-2}
\end{aligned} \right\rvert\, \begin{aligned}
\text { Point }(-2,1) \text { and slope } m=-1 \\
\text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{-1}{1}=\frac{y-1}{x+2} \\
y-1=-x-2
\end{aligned}
$$

207. Answer is B.
If $\quad x y^{2}+2 x y=8$ then at the point $(1,2) y^{\prime}=$

$$
\begin{aligned}
{\left[x 2 y y^{\prime}+y^{2}\right]+2\left[x y^{\prime}+y\right] } & =0 \\
2 x y y^{\prime}+y^{2}+2 x y^{\prime}+2 y & =0 \\
y^{\prime}(2 x y+2 x) & =-2 y-y^{2} \\
y^{\prime} & =\frac{-2 y-y^{2}}{2 x y+2 x} \\
y^{\prime}(1,2) & =\frac{-2(2)-(2)^{2}}{2(1)(2)+2(1)}=\frac{-4-4}{4+2}=\frac{-8}{6}=-\frac{4}{3}
\end{aligned}
$$

208. Answer is D.

If | 7 | $=x y-e^{x y} \quad$ then $\quad \frac{d y}{d x}=$ |
| ---: | :--- |
| 0 | $=\left[x y^{\prime}+y\right]-e^{x y}\left[x y^{\prime}+y\right]$ |
| 0 | $=x y^{\prime}+y-x y^{\prime} e^{x y}-y e^{x y}$ |
| $y e^{x y}-y$ | $=y^{\prime}\left(x-x e^{x y}\right)$ |

$\square \frac{-y}{x}=\frac{-y\left(1-e^{x y}\right)}{x\left(1-e^{x y}\right)}=\frac{y\left(e^{x y}-1\right)}{x\left(1-e^{x y}\right)}=\frac{y e^{x y}-y}{x-x e^{x y}}=y^{\prime}$
209. Answer is C.

Which is the slope of the line tangent to $\boldsymbol{y}^{2}+\boldsymbol{x y}-\boldsymbol{x}^{2}=\mathbf{1 1}$ at $(\mathbf{2}, \mathbf{3})$

$$
\begin{aligned}
2 y y^{\prime}+\left[x y^{\prime}+y\right]-2 x & =0 \\
2 y y^{\prime}+x y^{\prime} & =2 x-y \\
y^{\prime}(2 y+x) & =2 x-y \\
y^{\prime} & =\frac{2 x-y}{2 y+x} \\
y^{\prime}(2,3) & =\frac{2(2)-(3)}{2(3)+(2)}=\frac{1}{8}
\end{aligned}
$$

210. Answer is D.

The slope of the line tangent to the curve $\mathbf{3} \boldsymbol{x}^{2}-\mathbf{2 x y}+\boldsymbol{y}^{2}=\mathbf{1 1}$ at the point $(\mathbf{1}, \mathbf{- 2})$ is

$$
\begin{aligned}
3(2 x)-2\left[x y^{\prime}+y\right]+2 y y^{\prime} & =0 \\
6 x-2 x y^{\prime}-2 y+2 y y^{\prime} & =0 \\
2 y^{\prime}(y-x) & =2 y-6 x \\
y^{\prime} & =\frac{2(y-3 x)}{2(y-x)}=\frac{y-3 x}{y-x} \\
y^{\prime}(1,-2) & =\frac{(-2)-3(1)}{(-2)-(1)}=\frac{-5}{-3}=\frac{5}{3}
\end{aligned}
$$

211. Answer is D. Diagram is to help in the learning process only !

Find an equation of the tangent line to the graph of $\boldsymbol{x}^{2}+\mathbf{2} \boldsymbol{y}^{2}=\mathbf{3}$ at the point $(\mathbf{1}, \mathbf{1})$

$$
\begin{aligned}
x^{2}+2 y^{2} & =3 \\
2 x+2(2 y) y^{\prime} & =0 \\
2 x+4 y y^{\prime} & =0 \\
y^{\prime} & =-\frac{2 x}{4 y}=-\frac{x}{2 y} \\
y^{\prime}(1,1) & =-\frac{1}{2(1)}=-\frac{1}{2}
\end{aligned}
$$

Line with slope $\boldsymbol{m}=-\frac{1}{2}$ through point $(\mathbf{1}, \mathbf{1})$

$$
\begin{aligned}
\text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{-1}{2} & =\frac{y-1}{x-1} \\
2 y-2 & =-x+1 \\
2 y & =-x+3 \\
x+2 y & =3
\end{aligned}
$$

212. Answer is B.

$$
\text { Suppose } x^{2}-x y+y^{2}=3 \quad \text { Find } \frac{d y}{d x} \text { at the point }(a, b)
$$

$$
\begin{aligned}
2 x-\left[x y^{\prime}+y\right]+2 y y^{\prime} & =0 \\
2 x-x y^{\prime}-y+2 y y^{\prime} & =0
\end{aligned}
$$

$$
\begin{aligned}
y^{\prime}[2 y-x] & =y-2 x \\
\frac{d y}{d x} & =\frac{y-2 x}{2 y-x} \\
\frac{d y}{d x}(a, b) & =\frac{b-2 a}{2 b-a}
\end{aligned}
$$

213. Answer is C.

If $\quad(x-y)^{2}=y^{2}-x y$ then $\frac{d y}{d x}=$

$$
\begin{aligned}
2(x-y)^{\prime}\left(1-y^{\prime}\right) & =2 y y^{\prime}-\left[x y^{\prime}+y\right] \\
2 x-2 x y^{\prime}-2 y+2 y \mathcal{K}^{\prime} & =2 y \mathcal{K}^{\prime}-x y^{\prime}-y \\
-2 x y^{\prime}+x y^{\prime} & =-y+2 y-2 x \\
-x y^{\prime} & =y-2 x \\
y^{\prime} & =\frac{y-2 x}{-x}=\frac{2 x-y}{x}
\end{aligned}
$$

214. Answer is D.

The slope of the line tangent to the graph of $\ln (\boldsymbol{x}+\boldsymbol{y})=\boldsymbol{x}^{2}$ at the point where $\boldsymbol{x}=\mathbf{1}$ is

$$
\begin{aligned}
& \ln (x+y)=x^{2} \\
& \frac{1+y^{\prime}}{(x+y)}=2 x \\
& 1+y^{\prime}=2 x(x+y) \\
& y^{\prime}=2 x^{2}+2 x y-1 \\
& y^{\prime}(1, e-1)=2(1)^{2}+2(1)(e-1)-1 \\
& \text { Find point of tangency where } \boldsymbol{x}=\mathbf{1} \\
& \begin{aligned}
\ln (x+y) & =x^{2} \\
\ln (1+y) & =1 \\
1+y & =e^{1} \\
y & =e-1 \rightarrow \operatorname{point}(1, e-1)
\end{aligned} \\
& y^{\prime}(1, e-1)=2 e-1 \\
& \text { Find point of tangency where } \boldsymbol{x}=\mathbf{1}
\end{aligned}
$$

215. Answer is A.

The slope of the line tangent to the graph of $\ln (x y)=x$ at the point where $x=1$ is

$$
\begin{array}{rlrl}
\ln x+\ln y & =x & & \begin{array}{r}
\ln (x y)=x \\
\ln (y)=1
\end{array} \\
\frac{1}{x}+\frac{y^{\prime}}{y} & =1 & x=1 \rightarrow r \\
\frac{y^{\prime}}{y} & =1-\frac{1}{x} & \\
\text { Point } \rightarrow e \\
y^{\prime}(1, e) & =e\left(\frac{1-1}{1}\right)= & \\
& &
\end{array}
$$

216. Answer is B.

$$
\text { If } e^{x y}=\ln x, \text { then } \frac{d y}{d x}=
$$

$$
\begin{aligned}
e^{x y}\left[x y^{\prime}+y\right] & =\frac{1}{x} \\
x y^{\prime} e^{x y}+y e^{x y} & =\frac{1}{x} \\
x y^{\prime} e^{x y} & =\frac{1}{x}-y e^{x y}=\frac{1-x y e^{x y}}{x} \\
y^{\prime} & =\frac{1-x y e^{x y}}{x^{2} e^{x y}}
\end{aligned}
$$

217. Answer is C.

The curve defined by $\boldsymbol{x}^{3}+\boldsymbol{x y}-\boldsymbol{y}^{2}=\mathbf{1 0}$ has a vertical tangent line when $\boldsymbol{x}=$
Vertical tangent $y^{\prime}=\frac{-y-3 x^{2}}{\boldsymbol{x}-\mathbf{2 y}}=$ undefined

$$
\begin{aligned}
3 x^{2}+\left[x y^{\prime}+y\right]-2 y y^{\prime} & =0 \\
3 x^{2}+x y^{\prime}+y-2 y y^{\prime} & =0 \\
y^{\prime}[x-2 y] & =-y-3 x^{2} \\
y^{\prime} & =\frac{-y-3 x^{2}}{x-2 y}
\end{aligned}
$$

$$
\begin{aligned}
x-2 y & =0 \\
x & =2 y \\
\frac{x}{2} & =y \\
x^{3}+x y-y^{2} & =10 \\
x^{3}+x\left(\frac{x}{2}\right)-\left(\frac{x}{2}\right)^{2} & =10 \\
x^{3}+\frac{x^{2}}{2}-\frac{x^{2}}{4} & =10 \\
4 x^{3}+2 x^{2}-x^{2} & =40 \\
4 x^{3}+x^{2}-40 & =0 \\
x & =2.0742
\end{aligned}
$$

218. Answer is D. Diagram is to help in the learning process only !

The slope of the line tangent to the curve $y^{2}+(x y+1)^{3}=0$ at $(2,-1)$ is

$$
\begin{aligned}
y^{2}+(x y+1)^{3} & =0 \\
2 y y^{\prime}+3(x y+1)^{2}\left[x y^{\prime}+y+0\right] & =0 \\
2 y y^{\prime}+3 x(x y+1)^{2} y^{\prime}+3 y(x y+1)^{2} & =0 \\
y^{\prime}\left[2 y+3 x(x y+1)^{2}\right] & =-3 y(x y+1)^{2} \\
y^{\prime} & =\frac{-3 y(x y+1)^{2}}{2 y+3 x(x y+1)^{2}} \\
y^{\prime}(2,-1) & =\frac{-3(-1)(2(-1)+1)^{2}}{2(-1)+3(2)(2(-1)+1)} \\
& =\frac{3(-1)^{2}}{-2+6(-1)^{2}}=\frac{3}{4}
\end{aligned}
$$

219. Answer is C.

$$
\text { The curve } \quad \mathbf{3} \boldsymbol{y}^{2}-\mathbf{3} \boldsymbol{x y}+\mathbf{2} \boldsymbol{x}^{\mathbf{3}}=\mathbf{7} \text { has vertical tangents when }
$$

$$
3\left(2 y y^{\prime}\right)-3\left[x y^{\prime}+y\right]+2\left(3 x^{2}\right)=0
$$

$$
\begin{aligned}
6 y y^{\prime}-3 x y^{\prime}-3 y+6 x^{2} & =0 \\
y^{\prime}(6 y-3 x) & =3 y-6 x^{2} \\
y^{\prime} & =\frac{\not p\left(y-2 x^{2}\right)}{\not z(2 y-x)} \\
y^{\prime} & =\frac{y-2 x^{2}}{2 y-x}
\end{aligned}
$$

Vertical tangent $\rightarrow \boldsymbol{y}^{\prime}=$ undefined

$$
\begin{gathered}
y^{\prime}=\frac{y-2 x^{2}}{2 y-x}=\text { undefined } \\
2 y-x=0 \\
2 y=x
\end{gathered}
$$

220. Answer is A.
If $\quad e^{x y}=2$ then at the point $(1, \ln 2) \frac{d y}{d x}=$

$$
\begin{aligned}
e^{x y}\left[x y^{\prime}+y(1)\right] & =0 \quad \leftarrow \text { product rule } \\
x y^{\prime} e^{x y}+y e^{x y} & =0 \\
y^{\prime} & =\frac{-y e^{x y}}{x e^{x y}}=\frac{-y}{x} \\
y^{\prime}(1, \ln 2) & =\frac{-\ln 2}{1}=-\ln 2
\end{aligned}
$$

221. Answer is D. Diagram is to help in the learning process only!
The slope of $9 x-4 x \ln y=\mathbf{3}$ at $\left(\frac{\mathbf{1}}{\mathbf{3}}, \mathbf{1}\right)$ is

$$
\begin{aligned}
9 x-4 x \ln y & =3 \\
9-4\left[x \frac{y^{\prime}}{y}+\ln y\right] & =0 \\
9 & =4 x \frac{y^{\prime}}{y}+4 \ln y \\
9 y & =4 x y^{\prime}+4 y \ln y \\
9 y-4 y \ln y & =4 x y^{\prime} \\
y^{\prime} & =\frac{9 y-4 y \ln y}{4 x} \\
y^{\prime}\left(\frac{1}{3}, 1\right) & =\frac{9(1)-4(1) \ln (1)}{4\left(\frac{1}{3}\right)} \\
y^{\prime}\left(\frac{1}{3}, 1\right)=\frac{9-4(0)}{\frac{4}{3}} & =\frac{9}{1} \times \frac{3}{4}=\frac{27}{4}
\end{aligned}
$$

222. Answer is A. Diagram is to help in the learning process only!

If $\mathbf{2} \boldsymbol{x}^{3}+\mathbf{3 x y}+\boldsymbol{e}^{y}=\mathbf{6}$ what is \boldsymbol{y}^{\prime} when $\boldsymbol{x}=\mathbf{0}$

When $\boldsymbol{x}=\mathbf{0}$
$2 x^{3}+3 x y+e^{y}=6$
$2(0)^{3}+3(0) y+e^{y}=6$

$$
\begin{aligned}
e^{y} & =6 \\
y & =\ln 6
\end{aligned}
$$

point $(\mathbf{0}, \ln \mathbf{6})$

$$
2 x^{3}+3 x y+e^{y}=6
$$

$$
6 x^{2}+3\left[x y^{\prime}+y\right]+e^{y} y^{\prime}=0
$$

$$
6 x^{2}+3 x y^{\prime}+3 y+e^{y} y^{\prime}=0
$$

$$
y^{\prime}\left(3 x+e^{y}\right)=-3 y-6 x^{2}
$$

$$
y^{\prime}=\frac{-3 y-6 x^{2}}{3 x+e^{y}}
$$

$$
y^{\prime}(0, \ln 6)=\frac{-3 \ln 6-6(0)^{2}}{3(0)+e^{\ln 6}}=\frac{-3 \ln 6}{6} \approx--0.8958
$$

223. Answer is A.

$$
\begin{aligned}
& \text { If } \frac{d y}{d x}=1+y^{2} \text { then } \frac{d^{2} y}{d x^{2}}= \\
& y^{\prime}=1+y^{2} \\
& y^{\prime \prime}=0+2 y y^{\prime}=2 y \underbrace{\left(y^{\prime}\right)}_{1+y^{2}}=2 y\left(1+y^{2}\right)
\end{aligned}
$$

224. Answer is D.

If a point moves on the curve $x^{2}+y^{2}=25$, then, at $(0,5), \frac{d^{2} y}{d x^{2}}$ is

$$
\begin{array}{rl|rl}
x^{2}+y^{2} & =25 \\
2 x+2 y y^{\prime} & =0 \\
2 y y^{\prime} & =-2 x \\
y^{\prime} & =-\frac{2 x}{2 x}=-\frac{x}{y} & \rightarrow & \begin{aligned}
y y^{\prime} & =-x \\
{\left[y y^{\prime \prime}+y^{\prime} y^{\prime}\right] } & =-1 \\
y y^{\prime \prime}+\left(y^{\prime}\right)^{2} & =-1
\end{aligned} \\
y^{\prime}(0,5) & =-\frac{0}{5}=0 & \rightarrow & y^{\prime \prime}
\end{array}=\frac{-1-\left(y^{\prime}\right)^{2}}{y} .
$$

225. Answer is E.

$$
\begin{aligned}
& \text { If } y^{2}-3 x=7 \text { then } \frac{d^{2} y}{d x^{2}}= \\
& \begin{aligned}
y^{2}-3 x & =7 \\
2 y y^{\prime}-3 & =0
\end{aligned} y^{\prime}=\frac{3}{2 y} \\
& 2\left[y y^{\prime \prime}+y^{\prime} y^{\prime}\right]-0 \\
& 2 y y^{\prime \prime}+2 y^{\prime} y^{\prime}
\end{aligned}=0.0 \begin{aligned}
y^{\prime \prime} & =\frac{-2 y^{\prime} y^{\prime}}{2 y}=\frac{-\left(\frac{3}{2 y}\right)\left(\frac{3}{2 y}\right)}{\frac{y}{1}}=\frac{-9}{4 y^{2}} \times \frac{1}{y}=\frac{-9}{4 y^{3}}
\end{aligned}
$$

226. Answer is B.

Difficulty $=\mathbf{0 . 2 5}$

$$
\begin{aligned}
& \text { If } \frac{d y}{d x}=\sqrt{1-y^{2}}, \text { then } \frac{d^{2} y}{d x^{2}}= \\
& y^{\prime}=\left(1-y^{2}\right)^{\frac{1}{2}} \\
& y^{\prime \prime}=\frac{1}{2}\left(1-y^{2}\right)^{-\frac{1}{2}}\left(-2 y y^{\prime}\right) \\
& y^{\prime \prime}=\frac{1\left(-\not 2 y y^{\prime}\right)}{\not z\left(1-y^{2}\right)^{\frac{1}{2}}}=\frac{-y y^{\prime}}{y^{\prime}}=-\boldsymbol{y}
\end{aligned}
$$

The table gives values of $\boldsymbol{f}, \boldsymbol{f}^{\prime}, \boldsymbol{g}$ and \boldsymbol{g}^{\prime} at selected values of \boldsymbol{x} If $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{g}(\boldsymbol{x}))$ then $\boldsymbol{h}^{\prime}(\mathbf{1})=$

$$
\begin{aligned}
& h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x) \\
& h^{\prime}(1)=f^{\prime}(g(1)) g^{\prime}(1) \\
& h^{\prime}(1)=f^{\prime}(-1)[2] \\
& h^{\prime}(1)=5[2]=10
\end{aligned}
$$

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
-1	6	5	3	-2
1	3	-3	-1	2
3	1	-2	2	3

228. Answer is A.

If $f(x)=\frac{4}{x-1}$ and $\boldsymbol{g}(x)=2 x$ then the solution set of $f(\boldsymbol{g}(x))=\boldsymbol{g}(\boldsymbol{f}(x))$ is

$$
\begin{aligned}
\frac{4}{2 x-1} & =2\left(\frac{4}{x-1}\right) \\
\frac{4}{2 x-1} & =\frac{8}{x-1} \\
16 x-8 & =4 x-4 \\
12 x & =4 \\
x & =\frac{1}{3}
\end{aligned}
$$

229. Answer is D.

Let \boldsymbol{f} and \boldsymbol{g} be differentiable functions such that
$f(1)=2$
$f^{\prime}(1)=3$
$f^{\prime}(2)=-4$
$g(1)=2$
$g^{\prime}(1)=-3$
$g^{\prime}(2)=5$

If $\boldsymbol{h}(x)=\boldsymbol{f}(\boldsymbol{g}(\boldsymbol{x}))$ then $\boldsymbol{h}^{\prime}(\mathbf{1})=$

$$
\begin{aligned}
& h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x) \\
& h^{\prime}(1)=f^{\prime}(g(1)) g^{\prime}(1) \\
& h^{\prime}(1)=f^{\prime}(2)[-3] \\
& h^{\prime}(1)=-4[-3]=12
\end{aligned}
$$

230. Answer is A.

Difficulty $=\mathbf{0 . 6 0}$
If \boldsymbol{f} and \boldsymbol{g} are twice differentiable and if $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{f}\left(\boldsymbol{g}(\boldsymbol{x})\right.$), then $\boldsymbol{h}^{\prime \prime}(\boldsymbol{x})=$

$$
\begin{aligned}
h(x) & =f(g(x)) \\
h^{\prime}(x) & =f^{\prime}(g(x)) g^{\prime}(x)=\left[f^{\prime}(g(x))\right]\left[g^{\prime}(x)\right] \leftarrow \text { product rule } \\
h^{\prime \prime}(x) & =f^{\prime}(g(x)) g^{\prime \prime}(x)+f^{\prime \prime}(g(x)) g^{\prime}(x) g^{\prime}(x) \\
h^{\prime \prime}(x) & =f^{\prime}(g(x)) g^{\prime \prime}(x)+f^{\prime \prime}(g(x))\left[g^{\prime}(x)\right]^{2}
\end{aligned}
$$

231. Answer is B.

Let \boldsymbol{f} and \boldsymbol{g} be differentiable functions such that

$$
\begin{array}{rll}
f(1) & =4, & g(1)
\end{array}=3, \quad \begin{array}{ll}
f^{\prime}(3)=-5 \\
f^{\prime}(1) & =-4, \\
g^{\prime}(1) & =-3,
\end{array} \quad g^{\prime}(3)=2
$$

If $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{g}(\boldsymbol{x}))$ then $\boldsymbol{h}^{\prime}(\mathbf{1})=$

$$
\begin{aligned}
& h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x) \\
& h^{\prime}(1)=f^{\prime}(g(1)) g^{\prime}(1)= \\
& h^{\prime}(1)=f^{\prime}(3)(-3)=(-5)(-3)=15
\end{aligned}
$$

232. Answer is E.

The function \mathbf{F} is defined by

$$
\mathrm{F}(x)=G[x+G(x)]
$$

where the graph of the function \boldsymbol{G} is shown on the right.
The approximate value of $\mathbf{F}^{\prime}(\mathbf{1})=$

$$
\begin{aligned}
& \mathrm{F}(x)=G[x+G(x)] \\
& \mathrm{F}^{\prime}(x)=G^{\prime}[x+G(x)]\left(1+G^{\prime}(x)\right) \\
& \mathrm{F}^{\prime}(1)=G^{\prime}[1+G(1)]\left(1+G^{\prime}(1)\right) \\
& \mathrm{F}^{\prime}(1)=G^{\prime}[1+3](1+(-2)) \\
& \mathrm{F}^{\prime}(1)=G^{\prime}[4](-1) \\
& \mathrm{F}^{\prime}(1)=\frac{2}{3}(-1)=-\frac{2}{3}
\end{aligned}
$$

233. Answer is D.

The graphs of functions \boldsymbol{f} and \boldsymbol{g} are shown on the right. If $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{g}[\boldsymbol{f}(\boldsymbol{x})]$ which of the following statements are true about the function \boldsymbol{h}
I. $h(0)=4$
II. \boldsymbol{h} is increasing at $\boldsymbol{x}=\mathbf{2}$
III. The graph of \boldsymbol{h} has a horizontal

 tangent at $\boldsymbol{x}=\mathbf{4}$
I. $h(0)=g[f(0)]=g[5]=0 \quad$ Valse $\neq 4$
$h^{\prime}(x)=g^{\prime}[f(x)] f^{\prime}(x)$
II. $h^{\prime}(2)=g^{\prime}[f(2)] f^{\prime}(2)=g^{\prime}[1]\left(-\frac{1}{2}\right)=-2\left(-\frac{1}{2}\right)=$ positive
\boldsymbol{h} is increasing at $\boldsymbol{x}=\mathbf{2} \quad$ True $\boldsymbol{h}^{\prime}(\mathbf{2})>\mathbf{0}$
III. $h^{\prime}(4)=g^{\prime}[f(4)] f^{\prime}(4)=g^{\prime}[2](1)=0(1)=0$

The graph of \boldsymbol{h} has a horizontal tangent at $\boldsymbol{x}=\mathbf{4} \nabla \quad$ True $\boldsymbol{h}^{\prime}(\mathbf{4})=\mathbf{0}$

The composite function \boldsymbol{h} is defined by $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{f}[\boldsymbol{g}(\boldsymbol{x})]$ where \boldsymbol{f} and \boldsymbol{g} are functions whose graphs are shown below.

The number of horizontal tangent lines to the graph of \boldsymbol{h} is

$$
\begin{gathered}
h(x)=f(g(x)) \\
h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)=0 \quad \leftarrow \text { horizontal tangent } \\
{\left[\begin{array}{c}
f^{\prime}(g(x)=-2) \rightarrow x=-2,-4 \\
f^{\prime}(g(x)=1) \rightarrow x=0,3.4
\end{array}\right][x=-3,0,2]=0} \\
x=0 \text { is duplicated }\left[\begin{array}{c}
x=-2,-4 \\
x=0,3.4
\end{array}\right][x=-3,0,2]=0 \leftarrow 6 \text { horizontal tangent lines }
\end{gathered}
$$

235. Answer is D.

The graphs of functions \boldsymbol{f} and \boldsymbol{g} are shown at the right. If $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{f}[\boldsymbol{g}(\boldsymbol{x})]$, which of the following statements are true about the function \boldsymbol{h}
I. $h(2)=5$
II. \boldsymbol{h} is increasing at $\boldsymbol{x}=\mathbf{4}$
III. The graph of \boldsymbol{h} has a horizontal tangent at $\boldsymbol{x}=\mathbf{1}$

I. $h(2)=f[g(2)]=f[4]=3 \neq 5$ ख False
$h^{\prime}(x)=f^{\prime}[g(x)] g^{\prime}(x)$
$h^{\prime}(4)=f^{\prime}[g(4)] g^{\prime}(4)=f^{\prime}[1](-1)=(-1)(-1)=$ positive
II. \boldsymbol{h} is increasing at $\boldsymbol{x}=\mathbf{4} \boldsymbol{\nabla}$ True $\boldsymbol{h}^{\prime}(4)>0$

$$
h^{\prime}(1)=f^{\prime}[g(1)] g^{\prime}(1)=f^{\prime}[3](0)=(1)(0)=0
$$

III. The graph of \boldsymbol{h} has a horizontal tangent at $\boldsymbol{x}=\mathbf{1}$ Ø True $\boldsymbol{h}^{\prime}(\mathbf{4})=\mathbf{0}$

The second derivative of the function \boldsymbol{f} is given by $f^{\prime \prime}(x)=x(x-a)(x-b)^{2}$ The graph of $f^{\prime \prime}$ is shown in the diagram. For what values of \boldsymbol{x} does the graph of \boldsymbol{f} have a point of inflection ?
$\underbrace{\text { Point of inflection definition }}_{\text {when } f^{\prime \prime}(x) \text { changes sign }}$

$$
\begin{aligned}
y & =x^{3} \\
y^{\prime} & =3 x^{2} \\
y^{\prime \prime} & =6 x \text { cross } \\
y^{\prime \prime}(0) & =0
\end{aligned}
$$

\leftarrow Yes $(0,0)$
Inflection points

$$
\begin{aligned}
y & =x^{4} \\
y^{\prime} & =4 x^{3} \\
y^{\prime \prime} & =12 x^{2} \text { bounce } \\
y^{\prime \prime}(0) & =0
\end{aligned}
$$

$(0,0) \mathrm{No} \rightarrow$

237. Answer is C.

The graph of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ on the closed interval [2, 7] is shown. How many points of inflection does this graph have on this interval?

Points of inflection occur where the concavity changes; marked on the
 graph on the right with a vertical line.
3 points of inflection
238. Answer is E.

The diagram shows the graph of the derivative of a function f How many points of inflection does \boldsymbol{f} have in the interval shown?
Be very careful !!!
Inflection points \rightarrow concavity changes sign
\rightarrow on $f^{\prime}(x)$ graph occur at horizontal tangents
$\rightarrow \boldsymbol{x}$-values of dashed lines !!!
\rightarrow on this graph, 4 inflection points
239. Answer is B.

The function f is defined on the closed interval $[-2,3]$ The graph of $\boldsymbol{y}=\boldsymbol{f}^{\prime}(\boldsymbol{x})$ is shown in the diagram. Which of the following describes the relative extrema of \boldsymbol{f} and the points of inflection of the graph of \boldsymbol{f}

On a derivative graph

$\rightarrow f(x)$ minimum occur when $f^{\prime}(x)$ changes
from negative to positive
$\rightarrow f(x)$ maximum occur when $f^{\prime}(x)$ changes
from positive to negative
$\rightarrow \boldsymbol{f}(\boldsymbol{x})$ inflection points occur when slope $\boldsymbol{f}^{\prime}(\boldsymbol{x})=\mathbf{0}$
So the $f(x)$ graph would have 1 minimum
and $\mathbf{2}$ inflection points

240. Answer is C.

The function f is defined by

$$
f^{\prime}(x)=(x-2)^{2}(x-7)^{3} \text { The graph of } f
$$ has an inflection point where $x=$

$$
\begin{aligned}
f^{\prime}(x) & =(x-2)^{2}(x-7)^{3} \\
f^{\prime \prime}(x) & =(x-2)^{2} 3(x-7)^{2}+(x-7)^{3} 2(x-2) \\
f^{\prime \prime}(x) & =(x-2)(x-7)^{2}[3(x-2)+2(x-7)] \\
f^{\prime \prime}(x) & =(x-2)(x-7)^{2}[3 x-6+2 x-14] \\
f^{\prime \prime}(x) & =(x-2)(x-7)^{2}[5 x-20] \\
f^{\prime \prime}(x) & =5(x-2)^{1}(x-4)^{1}(x-7)^{2}
\end{aligned}
$$

$f^{\prime \prime}(\boldsymbol{x})$ degree $\mathbf{4}$ with a bounce at $\boldsymbol{x}=7$ and cross at $\underbrace{\boldsymbol{x}=\mathbf{2 , 4}}_{\text {inflection points }}$
Answer could be estimated from the $\boldsymbol{y}=\boldsymbol{f}^{\prime}(\boldsymbol{x})$ graph

241. Answer is B.

The function defined by $\boldsymbol{f}(\boldsymbol{x})=(\boldsymbol{x}-\mathbf{1})(\boldsymbol{x}+\mathbf{2})^{2}$ has inflection points at $\boldsymbol{x}=$

$$
\begin{aligned}
& f(x)=(x-1)(x+2)^{2} \quad \leftarrow y=f(x) \text { degree } 3 \text { (maximum of one inflection point) } \\
& f(x)=(x-1)\left(x^{2}+4 x+4\right) \\
& f(x)=x^{3}+3 x^{2}-4 \\
& f^{\prime}(x)=3 x^{2}+6 x \\
& f^{\prime \prime}(x)=6 x+6=0 \\
& \quad 6 x=-6 \\
& x=-1
\end{aligned}
$$

Inflection number

242. Answer is D.

For some key values of \boldsymbol{x}, the values of $\boldsymbol{f}(\boldsymbol{x})$, $\boldsymbol{f}^{\prime}(\boldsymbol{x})$, and $\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$ are given in the table. The equation of the tangent to the curve $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ at the point of inflection shown in the table is:

Inflection number $\rightarrow \boldsymbol{x}=\mathbf{- 2}$

$$
\left(f^{\prime \prime}(x) \text { changes sign }\right)
$$

Inflection point $\rightarrow \boldsymbol{f (- 2)}=-2 \rightarrow(-2,-2)$

x	-8	-6	-4	$\underbrace{-2}_{x \text {-value }}$	0	2	4
$f(x)$	0	5	0	$\underbrace{-2}_{y \text {-value }}$	-4	-6	-4
$f^{\prime}(x)$	4	0	-4	$\underbrace{-2}_{\text {slope }}$	-1	0	1
$f^{\prime \prime}(x)$	-2	-6	-2	$\underset{\substack{\text { change } \\ \text { concavity }}}{0}$	1	4	3

Slope at $(-2,-2) \rightarrow f^{\prime}(-2)=-2$
Slope at $(-2,-2)$ and $m=-2 \rightarrow$ Slope $=\frac{\text { rise }}{r u n}=\frac{-2}{1}=\frac{y+2}{x+2}$

$$
y+2=-x-4
$$

$$
y=-x-6
$$

243. Answer is B.

Which of the following statements are true about the function f if its derivative f^{\prime} is defined by $f^{\prime}(x)=x(x-a)^{3}$ where $a>0$
I. The graph of \boldsymbol{f} is increasing at $\boldsymbol{x}=\mathbf{2 a}$
II. The function \boldsymbol{f} has a local maximum at $\boldsymbol{x}=\mathbf{0}$
III. The graph of \boldsymbol{f} has an inflection point at $\boldsymbol{x}=\boldsymbol{a}$

Sketch graph of $\boldsymbol{f}^{\prime}(\boldsymbol{x})$ and look at zero's
Zeros at $\boldsymbol{x}=\mathbf{0}, \boldsymbol{a} \leftarrow$ degree $\mathbf{4}$ (no bounces)
I. The graph of \boldsymbol{f} is increasing at $\boldsymbol{x}=\mathbf{2 a} \boldsymbol{\square}$ True
$f^{\prime}(x)>0 \rightarrow f(x)$ is increasing
II. The function \boldsymbol{f} has a local maximum at $\boldsymbol{x}=\mathbf{0} \boldsymbol{\square}$ True at $\boldsymbol{x}=\mathbf{0} \quad \boldsymbol{f}^{\prime}(\boldsymbol{x})$ changes from $\underbrace{\text { positive to negative }}_{\text {maximum }}$
III. The graph of \boldsymbol{f} has an inflection point at $\boldsymbol{x}=\boldsymbol{a}$ 区 False at $\boldsymbol{x}=\boldsymbol{a} \quad \boldsymbol{f}^{\prime}(\boldsymbol{x})$ changes from $\underbrace{\text { negative to positive }}$
minimum
which cannot be an inflection point
244. Answer is D.

If $f^{\prime}(x)=x^{3}(x+2)^{2}$ then the graph of \boldsymbol{f} has inflection points when $\boldsymbol{x}=$

$$
\begin{aligned}
f^{\prime}(x) & =x^{3}(x+2)^{2} \leftarrow \text { product rule } \\
f^{\prime \prime}(x) & =x^{3} 2(x+2)^{1}+(x+2)^{2} 3 x^{2} \\
f^{\prime \prime}(x) & =2 x^{3}(x+2)+3 x^{2}(x+2)^{2} \\
f^{\prime \prime}(x) & =x^{2}(x+2)[2 x+3(x+2)] \\
f^{\prime \prime}(x) & =x^{2-\text { bounce }}(x+2)^{1-\text { cross }}(5 x+6)^{1-\text { cross }}
\end{aligned}
$$

Inflection points (concavity changes)
occur at $\boldsymbol{x}=\mathbf{2 , - \frac { 6 } { 5 }}$

245. Answer is E.

If $f^{\prime}(x)=-5(x-3)^{2}(x-2)$ which of the following features does the graph of $\boldsymbol{f}(\boldsymbol{x})$ have?

Sketch the graph of $\boldsymbol{y}=\boldsymbol{f}^{\prime}(\boldsymbol{x})$ with zero's at $\boldsymbol{x}=\mathbf{2}, \mathbf{3}$ and end behaviour $~ \searrow$ $f^{\prime}(x)=-5(x-3)^{2-\text { bounce }}(x-2)^{1 \text { cross }}$
$\rightarrow \boldsymbol{f}(\boldsymbol{x})$ local maximum at $\boldsymbol{x}=\mathbf{2}$ because $f^{\prime}(x)$ changes from positive to negative
 \rightarrow inflection point at $\boldsymbol{x}=\mathbf{3}$ because
slope of $\boldsymbol{f}^{\prime}(\boldsymbol{x})=\mathbf{0}$
(another inflection point at $\boldsymbol{x} \approx \mathbf{2 . 3}$)
246. Answer is B.

A function $f(x)$ exists such that $f^{\prime \prime}(x)=(x-2)^{2}(x+1)$
How many points of inflection does $f(x)$ have?
Sketch $f^{\prime \prime}(x)=(x-2)^{2-\text { bounce }}(x+1)^{1-\text { cross }}$
$\boldsymbol{f}^{\prime \prime}(\boldsymbol{x}-\boldsymbol{a})=\mathbf{0} \leftarrow$ inflection point if and only if
$\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$ changes sign at $\boldsymbol{x}=\boldsymbol{a}$ (no bounce)
$\boldsymbol{f}(\boldsymbol{x})$ has $\mathbf{1}$ point of inflection when $\boldsymbol{x}=\mathbf{- 1}$

247. Answer is B.

$f(x)=x^{2}-3 x^{3}$ has a point of inflection at
$f(x)=x^{2}-3 x^{3}$
$f^{\prime}(x)=2 x-9 x^{2}$
$f^{\prime \prime}(x)=2-18 x=0$
$2=18 x$
$\frac{1}{9}=\boldsymbol{x}$
Possible Inflection number

Inflection number $\quad \frac{1}{9}$

Interval	$-\infty<x<\frac{1}{9}$	$\frac{1}{9}<\boldsymbol{x}<\infty$
$\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime \prime}(\mathbf{0})=+$	$\boldsymbol{f}^{\prime \prime}(\mathbf{1})=-$
$\boldsymbol{f}(\boldsymbol{x})$	Concave $\boldsymbol{u p}$	Concave down

There is $\mathbf{1}$ inflection point (concavity changes once) at $\boldsymbol{x}=\frac{1}{9}$
248. Answer is C.

The graph of $y=2 x^{3}+5 x^{2}-\mathbf{6 x + 7}$ has a point of inflection at $\boldsymbol{x}=$

$$
\begin{array}{r}
y=2 x^{3}+5 x^{2}-6 x+7 \\
y^{\prime}=6 x^{2}+10 x-6 \\
y^{\prime \prime}=12 x+10=0 \\
12 x=-10 \\
x=-\frac{5}{6}
\end{array}
$$

Graph is concave down for $x<-\frac{5}{6}$
and concave $\boldsymbol{u} \boldsymbol{p}$ for $\boldsymbol{x}>-\frac{5}{6}$
Graph of $y^{\prime \prime}=\mathbf{1 2 x} \boldsymbol{+ 1 0}$ changes sign at $\boldsymbol{x}=-\frac{5}{6}$

249. Answer is C.

The number of inflection points in the curve $f(x)=x^{4}-4 x^{2}$ is

$$
\begin{aligned}
& f(x)=x^{4}-4 x^{2} \\
& f^{\prime}(x)=4 x^{3}-8 x \\
& f^{\prime \prime}(x)=12 x^{2}-8=0 \\
& 12 x^{2}=8 \\
& x^{2}=\frac{8}{12} \\
& x= \pm \sqrt{\frac{2}{3}}
\end{aligned}
$$

$$
\begin{array}{lll}
\text { Inflection numbers } & -\sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3}}
\end{array}
$$

Interval	$-\infty<\boldsymbol{x}<-\sqrt{\frac{2}{3}}$	$-\sqrt{\frac{2}{3}}<\boldsymbol{x}<\sqrt{\frac{2}{3}}$	$\sqrt{\frac{2}{3}}<\boldsymbol{x}<\infty$
$\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime \prime}(\mathbf{- 1})=+$	$\boldsymbol{f}^{\prime \prime}(\mathbf{0})=-$	$\boldsymbol{f}^{\prime \prime}(\mathbf{1})=+$
$\boldsymbol{f}(\boldsymbol{x})$	Concave $\boldsymbol{u} \boldsymbol{p}$	Concave down	Concave $\boldsymbol{u} \boldsymbol{p}$

There are $\mathbf{2}$ inflection points (concavity changes twice)
Possible Inflection numbers
250. Answer is B.

An equation of the line tangent to $\boldsymbol{y}=\boldsymbol{x}^{3}+3 \boldsymbol{x}^{2}+\mathbf{2}$ at it's point of inflection is

$$
\begin{aligned}
& y=x^{3}+3 x^{2}+2 \\
& y^{\prime}=3 x^{2}+6 x \\
& y^{\prime \prime}=6 x+6=0 \\
& 6 x=-6 \\
& x=-1
\end{aligned}
$$

$y^{\prime \prime}(0)=$ positive
$y^{\prime \prime}(-2)=$ negative
$\therefore x=-1$ is inflection number
$y=x^{3}+3 x^{2}+2$
$y(-1)=(-1)^{3}+3(-1)^{2}+2$
$y(-1)=-1+3+2=4$

Point of inflection (-1, 4)

$$
\begin{aligned}
& y^{\prime}=3 x^{2}+6 x \\
& y^{\prime}(-1)=3(-1)^{2}+6(-1) \\
& y^{\prime}(-1)=3-6=-3 \\
& \text { Slope of tangent }=-3 \\
& \text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{-3}{1}=\frac{y-4}{x+1} \\
& y-4=-3 x-3 \\
& y=-3 x+1
\end{aligned}
$$

251. Answer is B.

If the graph of $\boldsymbol{y}=\boldsymbol{x}^{3}+\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}-\mathbf{4}$ has a point of inflection at $(\mathbf{1},-\mathbf{6})$, what is the value of \boldsymbol{b}

$$
\begin{array}{rl|l}
y & =x^{3}+a x^{2}+b x-4 \\
y^{\prime} & =3 x^{2}+2 a x+b \\
y^{\prime \prime} & =6 x+2 a \\
y^{\prime \prime}(1) & =6(1)+2 a & =0 \\
2 a & =-6 \\
a & =-3
\end{array} \leftarrow \text { point of inflection } \left\lvert\, \begin{array}{rl}
y & =x^{3}-3 x^{2}+b x-4 \text { point at }(1,-6) \\
-6=(1)^{3}-3(1)^{2}+b(1)-4 \\
-6=1-3+b-4 \\
0 & 0
\end{array}\right.
$$

252. Answer is C.

Difficulty $=\mathbf{0 . 4 0}$
At what value of x does the graph of $y=\frac{\mathbf{1}}{x^{2}}-\frac{1}{x^{3}}$ have a point of inflection?

$$
\begin{aligned}
& y=\frac{1}{x^{2}}-\frac{1}{x^{3}}=x^{-2}-x^{-3} \quad x \neq 0 \\
& y^{\prime}=-2 x^{-3}+3 x^{-4} \\
& y^{\prime \prime}=6 x^{-4}-12 x^{-5}=\frac{6}{x^{4}}-\frac{12}{x^{5}}=0 \\
& \frac{6}{x^{4}}=\frac{12}{x^{5}} \\
& 12 x^{4}=6 x^{5} \\
& 12 x^{4}-6 x^{5}=0 \\
& 6 x^{4}(2-x)=0 \\
& \begin{array}{l|l}
x \leq 11 & 2=x
\end{array}
\end{aligned}
$$

Note this is not a polynomial graph, it is not defined when $\boldsymbol{x}=\mathbf{0}$

$$
\begin{aligned}
& y^{\prime \prime}=\frac{6}{x^{4}}-\frac{12}{x^{5}}=\frac{6 x-12}{x^{5}} \\
& y^{\prime \prime}(1)=\frac{6(1)-12}{1^{5}}=\text { negative } \\
& y^{\prime \prime}(3)=\frac{6(3)-12}{3^{5}}=\text { positive }
\end{aligned}
$$

Concavity changed at $\boldsymbol{x}=\mathbf{2}$
Possible Inflection number
253. Answer is C.

What is the value of \boldsymbol{k} such that the curve $\boldsymbol{y}=\boldsymbol{x}^{3}-\frac{\boldsymbol{k}}{\boldsymbol{x}}$ has a point of inflection at $\boldsymbol{x}=\mathbf{1}$

$$
\begin{aligned}
& y=x^{3}-\frac{k}{x}=x^{3}-k x^{-1} \\
& y^{\prime}=3 x^{2}+k x^{-2} \\
& y^{\prime \prime}=6 x-2 k x^{-3}=6 x-\frac{2 k}{x^{3}} \\
& y^{\prime \prime}(1)=6(1)-\frac{2 k}{(1)^{3}}=0 \\
& 6-2 k=0 \\
& 3=k
\end{aligned}
$$

The curve $\boldsymbol{y}=\boldsymbol{x}^{5}+\mathbf{1 0} \boldsymbol{x}^{4}-\mathbf{5}$ has points of inflection at $\boldsymbol{x}=$

$$
\begin{aligned}
& y=x^{5}+10 x^{4}-5 \\
& y^{\prime}=5 x^{4}+40 x^{3} \\
& y^{\prime \prime}=20 x^{3}+120 x^{2}=0 \\
& 20 x^{2}(x+6)=0
\end{aligned}
$$

Possible inflection points

Inflection numbers -6 0

Interval	$-\infty<\boldsymbol{x}<-\mathbf{6}$	$-\mathbf{6}<\boldsymbol{x}<\mathbf{0}$	$\mathbf{0}<\boldsymbol{x}<\infty$
$\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$	$\boldsymbol{f}^{\prime \prime}(-7)=-$	$\boldsymbol{f}^{\prime \prime}(-\mathbf{1})=+$	$\boldsymbol{f}^{\prime \prime}(\mathbf{1})=+$
$\boldsymbol{f}(\boldsymbol{x})$	Concave down	Concave up	Concave $\boldsymbol{u p}$

There is $\mathbf{1}$ inflection point (concavity changes once)
when $x=-6$
255. Answer is E.

The curve $\boldsymbol{y}=\mathbf{1}-\mathbf{6} \boldsymbol{x}^{2}-\boldsymbol{x}^{4}$ has inflection points at $\boldsymbol{x}=$

$$
\begin{aligned}
y^{\prime} & =-12 x-4 x^{3} \\
y^{\prime \prime} & =-12-12 x^{2} \\
y^{\prime \prime} & =-12\left(1+x^{2}\right)=0
\end{aligned}
$$

No solution, therefore no inflection points.
256. Answer is A.

The slope of the line tangent to the curve $f(x)=x^{3}+3 x^{2}-\mathbf{2 4 x}+4$ at the point of inflection is

$$
\begin{array}{c|c}
f(x)=x^{3}+3 x^{2}-24 x+4 & f^{\prime}(x)=3 x^{2}+6 x-24 \\
f^{\prime}(x)=3 x^{2}+6 x-24 & f^{\prime}(-1)=3(-1)^{2}+6(-1)-24 \\
f^{\prime \prime}(x)=6 x+6=0 & f^{\prime}(-1)=3-6-24=-27 \\
6(x+1)=0 & \\
x=-1 &
\end{array}
$$

257. Answer is E.

The curve $\boldsymbol{y}=\mathbf{3} \boldsymbol{x}^{4}-\mathbf{8} \boldsymbol{x}^{\mathbf{3}}+\mathbf{6} \boldsymbol{x}^{2}-\mathbf{1}$ has points of inflection at $\boldsymbol{x}=$

$$
\begin{aligned}
& y^{\prime}=12 x^{3}-24 x^{2}+12 x \\
& y^{\prime \prime}=36 x^{2}-48 x+12=0 \\
& \mathbf{3} \boldsymbol{x}^{2}-\mathbf{4 x}+\mathbf{1}=\mathbf{0} \leftarrow \text { parabola opening up with zero's at } \boldsymbol{x}=\frac{1}{3}, \mathbf{1} \\
& (3 x-1)(x-1)=0 \quad \therefore y=f^{\prime \prime}(x) \text { must change sign twice. } \\
& \begin{array}{l|l}
\bar{x}=\frac{1}{3} & x=1
\end{array}
\end{aligned}
$$

Inflection numbers
258. Answer is E.

The equation of the line tangent to the curve $\boldsymbol{f}(\boldsymbol{x})=\mathbf{2} \boldsymbol{x}^{\mathbf{3}}-\mathbf{3} \boldsymbol{x}^{2}$ at the point of inflection is

$$
\begin{array}{c|l}
\qquad f(x)=2 x^{3}-3 x^{2} & f(x)=2 x^{3}-3 x^{2} \\
f^{\prime}(x)=6 x^{2}-6 x & f\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)^{3}-3\left(\frac{1}{2}\right)^{2} \\
f^{\prime \prime}(x)=12 x-6=\mathbf{0} & f\left(\frac{1}{2}\right)=\frac{1}{4}-\frac{3}{4}=-\frac{1}{2} \\
12 x=6 & \text { Inflection point }\left(\frac{1}{2},-\frac{1}{2}\right) \\
x=\frac{1}{2} & \\
\text { Inflection number } &
\end{array}
$$

$$
\begin{aligned}
& f^{\prime}(x)=6 x^{2}-6 x \\
& f^{\prime}\left(\frac{1}{2}\right)=6\left(\frac{1}{2}\right)^{2}-6\left(\frac{1}{2}\right)=\frac{3}{2}-3=-\frac{3}{2} \\
& \text { Slope }=\frac{-3}{2}=\frac{y+\frac{1}{2}}{x-\frac{1}{2}} \\
& 2 y+1=-3 x+\frac{3}{2} \\
& 4 y+2=-6 x+3 \\
& 6 x+4 y=1
\end{aligned}
$$

259. Answer is D.

An equation for the line tangent to the curve $\boldsymbol{f}(\boldsymbol{x})=-\boldsymbol{x}^{3}+\mathbf{1 2 x + 5}$ at the point of inflection is

$f(x)=-x^{3}+\mathbf{1 2 x + 5}$	$f(x)=-x^{3}+\mathbf{1 2 x + 5}$
$f^{\prime}(x)=-\mathbf{3} x^{2}+\mathbf{1 2}$	$f(0)=\mathbf{5}$
$f^{\prime \prime}(x)=-\mathbf{6 x = 0}$	$\mathbf{(0 , 5) \text { inflection point }}$
$x=\mathbf{0}$	$f^{\prime}(x)=-\mathbf{3} x^{2}+\mathbf{1 2}$
Inflection number	$f^{\prime}(0)=\mathbf{1 2}$

Equation for the line tangent at $\mathbf{(0 , 5)}$

$$
\begin{array}{r}
\text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{12}{1}=\frac{y-5}{x} \\
y-5=12 x \\
y-12 x=5
\end{array}
$$

260. Answer is C.

The curve $\boldsymbol{y}=\mathbf{3} \boldsymbol{x}^{5}-\mathbf{5} \boldsymbol{x}^{4}+\mathbf{3 x} \boldsymbol{x}$ 2 has a point of inflection at

$$
\begin{gathered}
y=3 x^{5}-5 x^{4}+3 x-2 \\
y^{\prime}=15 x^{4}-20 x^{3}+3 \\
y^{\prime \prime}=60 x^{3}-60 x^{2}=0 \\
\\
\quad \frac{60 x^{2}(x-1)=0}{x=0} x=1
\end{gathered}
$$

Inflection number at $\boldsymbol{x}=\mathbf{1}$ (no bounce)

$$
\begin{aligned}
& \qquad y=3 x^{5}-5 x^{4}+3 x-2 \\
& y(1)=3(1)^{5}-5(1)^{4}+3(1)-2 \\
& y(1)=3-5+3-2=-1 \\
& \text { Inflection point }(1,-1)
\end{aligned}
$$

If the graph of $\boldsymbol{f}(\boldsymbol{x})=\mathbf{2} \boldsymbol{x}^{2}+\frac{\boldsymbol{k}}{\boldsymbol{x}}$ has a point of inflection at $\boldsymbol{x}=\mathbf{- 1}$ then the value of \boldsymbol{k} is

$$
\begin{aligned}
f(x) & =2 x^{2}+k x^{-1} \\
f^{\prime}(x) & =4 x-k x^{-2} \\
f^{\prime \prime}(x) & =4+2 k x^{-3}
\end{aligned}=4+\frac{2 k}{x^{3}}, \begin{aligned}
f^{\prime \prime}(-1)=4+\frac{2 k}{(-1)^{3}} & =0 \quad \leftarrow x=-1 \text { at inflection point } \\
4-2 k & =0 \\
4 & =2 k \\
2 & =k
\end{aligned}
$$

262. Answer is A.

The function $\boldsymbol{y}=\boldsymbol{x}^{4}+\boldsymbol{b} \boldsymbol{x}^{2}+\mathbf{8 x}+\mathbf{1}$ has a horizontal tangent and a point of inflection for the same value of \boldsymbol{x} What must be the value of \boldsymbol{b}

$$
\begin{array}{ll}
y=x^{4}+b x^{2}+8 x+1 & \\
y^{\prime}=4 x^{3}+2 b x+8=0 & \rightarrow b=\frac{-8-4 x^{3}}{2 x} \\
y^{\prime \prime}=12 x^{2}+2 b=0 & \rightarrow b=\frac{-12 x^{2}}{2}
\end{array}
$$

$$
\begin{aligned}
\frac{-8-4 x^{3}}{2 x} & =\frac{-12 x^{2}}{2} \\
-16-8 x^{3} & =-24 x^{3} \\
-16 & =-16 x^{3} \\
1 & =x^{3} \\
1 & =x \text { } \\
b=\frac{-12(1)^{2}}{2} & =-6
\end{aligned}
$$

263. Answer is C.

How many points of inflection does the graph of $\boldsymbol{y}=\mathbf{2} \boldsymbol{x}^{6}+\mathbf{9} x^{5}+\mathbf{1 0} x^{4}-\boldsymbol{x}+\mathbf{2}$ have ?

$$
\begin{aligned}
y^{\prime} & =12 x^{5}+45 x^{4}+40 x^{3}-1 \\
y^{\prime \prime} & =60 x^{4}+180 x^{3}+120 x^{2} \\
y^{\prime \prime} & =60 x^{2}\left(x^{2}+3 x+2\right) \\
y^{\prime \prime} & =60 x^{2=\text { bounce }}(x+1)^{1=\text { cross }}(x+2)^{1=\text { cross }}
\end{aligned}
$$

$\boldsymbol{y}^{\prime \prime}($ crosses the \boldsymbol{x}-axis twice \rightarrow changes sign $) \rightarrow \mathbf{2}$ points of inflection at $\boldsymbol{x}=\mathbf{- 1}$ and $\boldsymbol{x}=\mathbf{- 2}$
264. Answer is D.

If the graph of $\boldsymbol{y}=\boldsymbol{x}^{3}+\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}-\mathbf{8}$ has a point of inflection at $(\mathbf{2}, \mathbf{0})$, what is the value of \boldsymbol{b}

$$
\begin{array}{r|r}
y^{\prime}=3 x^{2}+2 a x+b & y=x^{3}+a x^{2}+b x-8 \leftarrow \text { point }(2,0) \\
y^{\prime \prime}=6 x+2 a & 0=(2)^{3}+(-6)(2)^{2}+b(2)-8 \\
y^{\prime \prime}(2)=6(2)+2 a=0 & 24=2 b \\
2 a=-12 & 12=b
\end{array}
$$

265. Answer is A.

What is the \boldsymbol{x}-coordinate of the point of inflection on the graph of $\boldsymbol{y}=\boldsymbol{x} \boldsymbol{e}^{\boldsymbol{x}}$

$$
\begin{array}{rl}
y & =x e^{x} \\
y^{\prime} & =x e^{x}+e^{x} \\
y^{\prime \prime} & =x e^{x}+e^{x}+e^{x} \\
y^{\prime \prime} & =x e^{x}+2 e^{x}=e^{x}(x+2)=0 \\
e^{x}(x+2)=0 \\
e^{x} \neq 0 & x=-2
\end{array}
$$

266. Answer is C.

What is the x-coordinate of the point of inflection of the graph of $y=x^{3}+3 x^{2}-\mathbf{4 5 x} \boldsymbol{x} \mathbf{8 1}$

$$
\begin{gathered}
y=x^{3}+3 x^{2}-45 x+81 \\
y^{\prime}=3 x^{2}+6 x-45 \\
y^{\prime \prime}=6 x+6=0 \\
6 x=-6 \\
x=-1
\end{gathered}
$$

Inflection number

267. Answer is D.

What are the \boldsymbol{x}-coordinates of the points of inflection on the graph of the function
$f(x)=3 x^{4}-4 x^{3}+6$
$f^{\prime}(x)=12 x^{3}-12 x^{2}$
$f^{\prime \prime}(x)=36 x^{2}-24 x=0$
$12 x(3 x-2)=0$

$\boldsymbol{x}=\mathbf{0}$	$x=\frac{2}{3}$	$\leftarrow x$-coordinates of the points of inflection

Given the function $\boldsymbol{h}(\boldsymbol{x})=\mathbf{6} \boldsymbol{x}^{3}-\mathbf{8} \boldsymbol{x}^{2}+\mathbf{2}$, at what \boldsymbol{x} value(s) is/are the inflection point(s)?

$$
\begin{aligned}
& h(x)=6 x^{3}-8 x^{2}+2 \\
& h^{\prime}(x)=18 x^{2}-16 x \\
& h^{\prime \prime}(x)=36 x-16=0 \\
& 36 x=16 \\
& x=\frac{4}{9}
\end{aligned}
$$

Inflection number

269. Answer is C.

How many inflection points does $\mathbf{3} \boldsymbol{x}^{4}-\mathbf{5} \boldsymbol{x}^{3}-\mathbf{9 x}+\mathbf{2}$ have?

$$
\begin{aligned}
y= & 3 x^{4}-5 x^{3}-9 x+2 \\
y^{\prime}= & 12 x^{3}-15 x^{2}-9 \\
y^{\prime \prime}= & 36 x^{2}-30 x=0 \\
& \frac{6 x(6 x-5)=0}{x=0} x=\frac{5}{6}
\end{aligned} \Rightarrow
$$

Interval	$-\infty<x<\mathbf{0}$	$\mathbf{0}<\boldsymbol{x}<\frac{5}{6}$	$\frac{5}{6}<x<\infty$
$y^{\prime \prime}$	$y^{\prime \prime}(-\mathbf{1})=+$	$\boldsymbol{y}^{\prime \prime}\left(\frac{1}{2}\right)=-$	$\boldsymbol{y}^{\prime \prime}(\mathbf{1})=+$
\boldsymbol{y}	concave up	concave down	concave up

Both $\boldsymbol{x}=\mathbf{0}$ and $\boldsymbol{x}=\frac{5}{6}$ have changes in concavity so there are $\mathbf{2}$ inflection points

270. Answer is B.

What is the x-coordinate of the point of inflection on the graph of $y=\frac{2}{3} x^{3}-2 x^{2}+7$

$$
\begin{aligned}
& y= \frac{2}{3} x^{3}-2 x^{2}+7 \\
& y^{\prime}=2 x^{2}-4 x \\
& y^{\prime \prime}=4 x-4=0 \\
& 4 x=4 \\
& x=1
\end{aligned}
$$

271. Answer is B.

What is the x-coordinate of the point of inflection for the graph of $y=x^{3}+\mathbf{3} x^{2}-\mathbf{1}$

$$
\begin{aligned}
& y= x^{3}+3 x^{2}-1 \\
& y^{\prime}= 3 x^{2}+6 x \\
& y^{\prime \prime}=6 x+6=0 \\
& 6 x=-6 \\
& x=-1
\end{aligned}
$$

A particle moves along the \boldsymbol{x}-axis so that its position at time \boldsymbol{t} is $\boldsymbol{x}(\boldsymbol{t})=\mathbf{2} \boldsymbol{t}^{\mathbf{2}} \mathbf{- 7 \boldsymbol { 7 } + \mathbf { 3 }}$ (\boldsymbol{x} in cm and \boldsymbol{t} in seconds). What is the velocity (in $\mathrm{cm} / \mathrm{sec}$) at time $\boldsymbol{t}=\mathbf{2}$ seconds?

$$
\begin{aligned}
x(t) & =2 t^{2}-7 t+3 \\
v(t)=x^{\prime}(t) & =4 t-7 \\
v(2) & =4(2)-7=1 \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

273. Answer is C.
Difficulty = 0.76 U

A particle moves along the x-axis according to the function $x(t)=t^{2}-4 t+3$, where x (meters) is the position of the particle at time \boldsymbol{t} (seconds). At what time \boldsymbol{t} does the particle have a velocity of $6 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
x(t)=t^{2}-4 t & +3 \\
v(t)=2 t-4 & =6 \\
2 t & =10 \\
t & =5
\end{aligned}
$$

274. Answer is D.

Difficulty $=\mathbf{0 . 7 5} \mathbf{~ U}$
A particle moves along the \boldsymbol{x}-axis so that its position at time \boldsymbol{t} is $\boldsymbol{x}(\boldsymbol{t})=\mathbf{3} \boldsymbol{t}^{3}+\mathbf{2} \boldsymbol{t}^{2}+\mathbf{7}$ where \boldsymbol{x} is in meters and \boldsymbol{t} is in seconds. Find the velocity at $\boldsymbol{t}=\mathbf{2}$ seconds.

$$
\begin{aligned}
& x(t)=3 t^{3}+2 t^{2}+7 \\
& v(t)=9 t^{2}+4 t \\
& v(2)=9(2)^{2}+4(2)=36+8=44 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

275. Answer is D.

Difficulty $=\mathbf{0 . 7 1} \mathbf{~ U}$
A particle moves along the \boldsymbol{x}-axis according to the position function $\boldsymbol{x}(\boldsymbol{t})=\mathbf{2} \boldsymbol{t}^{\mathbf{3}}-\mathbf{6} \boldsymbol{t}^{2}+\mathbf{9}$
where \boldsymbol{x} is in meters and \boldsymbol{t} is in seconds. Find the value(s) of \boldsymbol{t} when the particle is stationary.

$$
\begin{aligned}
& x(t)=2 t^{3}-6 t^{2}+9 \\
& v(t)=6 t^{2}-12 t=0 \\
& 6 t(t-2)=0
\end{aligned} \leftarrow \text { particle is stationary }
$$

A particle moves along the \boldsymbol{x}-axis so that its position at time \boldsymbol{t} is $\boldsymbol{x}(\boldsymbol{t})=\boldsymbol{t}^{2}-\mathbf{2 t + 5}$ where \boldsymbol{x} is in centimeters and \boldsymbol{t} is in seconds. At what time is the particle's velocity $\mathbf{4 ~ c m} / \boldsymbol{s}$

$$
\begin{gathered}
x(t)=t^{2}-2 t+5 \\
v(t)=2 t-2=4 \quad \leftarrow \text { velocity } 4 \mathrm{~cm} / \mathrm{s} \\
2 t=6 \\
t=3
\end{gathered}
$$

277. Answer is B.

Difficulty $=\mathbf{0 . 6 9} \mathbf{~ U}$
An object moves along the \boldsymbol{x}-axis so that its position at time \boldsymbol{t} is $\boldsymbol{x}=\boldsymbol{t}^{2}-\mathbf{3 t}+\mathbf{5}$ where \boldsymbol{x} is in meters and \boldsymbol{t} is in seconds. At what time(s) is its velocity $5 \mathrm{~m} / \boldsymbol{s}$

$$
\begin{gathered}
x(t)=t^{2}-3 t+5 \\
v(t)=2 t-3=5 \quad \leftarrow \text { velocity } 5 \mathrm{~m} / \mathrm{s} \\
2 t=8 \\
t=4
\end{gathered}
$$

278. Answer is B.

A particle moves along the \boldsymbol{x}-axis according to the position function $\boldsymbol{x}(\boldsymbol{t})=\mathbf{2} \boldsymbol{t}^{\mathbf{3}}-\mathbf{6} \boldsymbol{t}+\mathbf{1}$ where \boldsymbol{x} is in meters and \boldsymbol{t} is in seconds. For what values of \boldsymbol{t} is the particle moving to the right?

$$
\begin{array}{r|c}
x(t)=2 t^{3}-6 t+1 & v(t)=6 t^{2}-6 \\
v(t)=6 t^{2}-6=0 & \text { Parabola opening } u p \text { with } \\
6 t^{2}=6 & \text { zeros of } t= \pm 1 \\
t^{2}=1 & \text { moving to the right means } v(t)>0 \\
t= \pm 1 & x<-1 \text { or } x>1
\end{array}
$$

279. Answer is D.

The position of an object moving in a straight path is given by $\boldsymbol{x}(\boldsymbol{t})=\boldsymbol{k} \boldsymbol{t}^{2}+\mathbf{1 2 t}$, where \boldsymbol{x} is in meters and \boldsymbol{t} is in seconds. Find the value of \boldsymbol{k} if the velocity of the object is $\mathbf{4} \boldsymbol{m} / \boldsymbol{s}$ when $\boldsymbol{t}=\mathbf{2}$ seconds.

$$
\left.\begin{array}{rl}
x(t) & =k t^{2}+12 t \\
v(t) & =2 k t+12 \\
v(2) & =2 k(2)+12
\end{array}\right)=4 \quad \leftarrow \text { velocity of the object is } 4 \mathrm{~m} / \mathrm{s}
$$

280. Answer is C.

A particle moves along the x-axis according to the position function $\boldsymbol{x}(\boldsymbol{t})=\boldsymbol{t}^{3}-\mathbf{4} \boldsymbol{t}^{2}+\mathbf{3}$
(\boldsymbol{x} in meters, \boldsymbol{t} in seconds). Determine the velocity in $\boldsymbol{m} / \boldsymbol{s}$ at $\boldsymbol{t}=\mathbf{- 2}$

$$
\begin{aligned}
x(t) & =t^{3}-4 t^{2}+3 \\
v(t) & =3 t^{2}-8 t \\
v(-2) & =3(-2)^{2}-8(-2)=12+16=28 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

281. Answer is C.

A particle moves along the \boldsymbol{x}-axis according to the position function $\boldsymbol{x}(\boldsymbol{t})=\boldsymbol{t}^{2}-\boldsymbol{t} \quad(\boldsymbol{x}$ in cm , \boldsymbol{t} in sec). Determine the time \boldsymbol{t} (in sec) when the velocity is $\mathbf{1 2 ~ c m} / \boldsymbol{s}$

$$
\begin{aligned}
x(t) & =t^{2}-t \\
v(t)=2 t-1 & =12 \quad \leftarrow \text { velocity is } 12 \mathrm{~cm} / \mathrm{s} \\
2 t-1 & =12 \\
2 t & =13 \\
t & =6.5
\end{aligned}
$$

282. Answer is C.

As a particle moves along the \boldsymbol{x}-axis, its distance from the origin is given by $\boldsymbol{x}(\boldsymbol{t})=\mathbf{3} \boldsymbol{t}^{2}-\mathbf{4 t}+\mathbf{1 0}$ where \boldsymbol{x} is in meters and \boldsymbol{t} is in seconds. At what time is the velocity $\mathbf{1 4} \boldsymbol{m} / \boldsymbol{s}$

$$
\begin{gathered}
x(t)=3 t^{2}-4 t+10 \\
v(t)=6 t-4=14 \quad \leftarrow \text { velocity } 14 \mathrm{~m} / \mathrm{s} \\
6 t=18 \\
t=3
\end{gathered}
$$

283. Answer is A.

An object moves so that its distance in metres, at time \boldsymbol{t} seconds, is given by $\boldsymbol{f}(\boldsymbol{t})$. What does $\boldsymbol{f}^{\prime} \mathbf{(2)}$ represent?
Position function $\rightarrow \boldsymbol{f}(\boldsymbol{t}) \quad \leftarrow$ position at any time \boldsymbol{t}
Velocity function $\rightarrow \boldsymbol{f}^{\prime}(\boldsymbol{x}) \quad \leftarrow$ velocity at any time \boldsymbol{t}
Velocity at $\boldsymbol{t}=\mathbf{2} \rightarrow \boldsymbol{f}^{\prime}(\mathbf{2})$

284. Answer is B.

As a particle moves along the \boldsymbol{x}-axis, its distance from the origin is given by $\boldsymbol{x}(\boldsymbol{t})=\boldsymbol{t}^{2}-\boldsymbol{6} \boldsymbol{t}+\mathbf{5}$ At what time \boldsymbol{t} (in seconds) is the velocity of the particle zero?

$$
\begin{gathered}
x(t)=t^{2}-6 t+5 \\
v(t)=2 t-6=0 \leftarrow \text { velocity of the particle zero } \\
2 t=6 \\
t=3
\end{gathered}
$$

A particle moves along a line according to the distance function $s(t)=\mathbf{2 t} \boldsymbol{t}^{3} \mathbf{- 2 1} t^{2}+\mathbf{6 0 t} \boldsymbol{t} \mathbf{1 3}$ During the time interval from $\boldsymbol{t}=\mathbf{1}$ to $\boldsymbol{t}=\mathbf{1 2}$, how many times does the paticle reverse its direction of movement?

$$
\begin{aligned}
& s(t)=2 t^{3}-21 t^{2}+60 t+13 \\
& v(t)=6 t^{2}-42 t+60=0 \\
& t^{2}-7 t+10=0 \\
& (t-2)(t-5)=0 \\
& \overline{t=2} \begin{array}{l|l}
t=5 & \text { Twice in interval from } t=1 \text { to } t=12
\end{array}
\end{aligned}
$$

286. Answer is E.

Difficulty $=0.67$
A particle moves along the \boldsymbol{x}-axis so that at time $\boldsymbol{t} \geq \mathbf{0}$ its position is given by
$\boldsymbol{x}(\boldsymbol{t})=2 t^{3}-21 t^{2}+\mathbf{7 2 t - 5}$ At what time \boldsymbol{t} is the particle at rest?

$$
\begin{array}{rl}
x^{\prime}(t)= & 6 t^{2}-42 t+72 \\
x^{\prime}(t)= & 6 t^{2}-42 t+72=0 \\
t^{2}-7 t+12=0 \\
(t-3)(t-4)=0 \\
t=3 & t=4
\end{array}
$$

287. Answer is B.

The position of a particle moving along a straight line at any time \boldsymbol{t} is given by $\boldsymbol{s}(\boldsymbol{t})=\boldsymbol{t}^{2}+4 \boldsymbol{t}+\mathbf{4}$ What is the acceleration of the particle when $\boldsymbol{t}=\mathbf{4}$

$$
\begin{aligned}
s(t) & =t^{2}+4 t+4 \\
v(t)=s^{\prime}(t) & =2 t+4 \\
a(t)=s^{\prime \prime}(t) & =2 \\
a(4)=s^{\prime \prime}(4) & =2
\end{aligned}
$$

288. Answer is C.

A particle moves along the \boldsymbol{x}-axis so that at any time \boldsymbol{t} its position is given by $\boldsymbol{x}(\boldsymbol{t})=\boldsymbol{t} \boldsymbol{e}^{-2 \boldsymbol{t}}$ For what values of \boldsymbol{t} is the particle at rest?

$$
\left.\begin{aligned}
& x(t)=t e^{-2 t} \\
& v(t)=t\left(-2 e^{-2 t}\right)+e^{-2 t}=0 \\
& \qquad \begin{array}{l|r}
e^{-2 t}(-2 t+1)=0
\end{array} \\
& \hline e^{-2 t} \neq 0 \\
&
\end{aligned} \right\rvert\, \begin{array}{r}
-2 t+1=0 \\
\frac{1}{2}=t \\
\end{array} \quad \leftarrow \text { particle at rest when } t=\frac{1}{2}
$$

A particle moves along the \boldsymbol{x}-axis so that at any time $\boldsymbol{t} \geq \mathbf{0}$ its position is given by $\boldsymbol{x}(\boldsymbol{t})=\boldsymbol{t}^{\mathbf{3}}-\mathbf{3} \boldsymbol{t}^{2}-\mathbf{9 t}+\mathbf{1}$ For what values of \boldsymbol{t} is the particle at rest

$$
\begin{gathered}
x(t)=t^{3}-3 t^{2}-9 t+1 \\
v(t)=3 t^{2}-6 t-9=0 \quad \leftarrow \text { at rest } \\
t^{2}-2 t-3=0 \\
(t-3)(t+1)=0 \\
\hline t=3 \\
t=-1
\end{gathered}
$$

290. Answer is C.

A particle starts at time $\boldsymbol{t}=\mathbf{0}$ and moves along a number line so that its position, at time $\boldsymbol{t} \geq \mathbf{0}$ is given by $\boldsymbol{x}(\boldsymbol{t})=(\boldsymbol{t}-\mathbf{2})^{\mathbf{3}}(\boldsymbol{t}-\mathbf{6})$ The particle is moving to the right for

$$
x(t)>0
$$

291. Answer is C.

The formula $\boldsymbol{x}(\boldsymbol{t})=\ln \boldsymbol{t}+\frac{\boldsymbol{t}^{2}}{\mathbf{1 8}}+\mathbf{1}$ gives the position of an object moving along the \boldsymbol{x}-axis during the time interval $\mathbf{1} \leq \boldsymbol{t} \leq \mathbf{5}$ At the instant when the acceleration of the object is zero, the velocity is

$$
\begin{array}{rlrl}
x^{\prime}(t)=v(t) & =\frac{1}{t}+\frac{t}{9} \\
v^{\prime}(t)=a(t)=\frac{-1}{t^{2}}+\frac{1}{9} & =0 & v(t)=\frac{1}{t}+\frac{t}{9} \\
\frac{1}{9} & =\frac{1}{t^{2}} & v(3)=\frac{1}{3}+\frac{3}{9}=\frac{2}{3} \\
t^{2} & =9 \\
1 \leq t \leq 5 & \rightarrow \quad t & \\
&
\end{array}
$$

Which of the following must be true about a particle that starts at $\boldsymbol{t}=\mathbf{0}$ and moves along a number line if its position at time t is given by $\boldsymbol{s}(\boldsymbol{t})=(\boldsymbol{t}-\mathbf{2})^{\mathbf{3}}(\boldsymbol{t}-\mathbf{6})$
I. The particle is moving to the right for $\boldsymbol{t}>\mathbf{5}$
II. The particle is at rest at $\boldsymbol{t}=\mathbf{2}$ and $\boldsymbol{t}=\mathbf{6}$
III. The particle changes direction at $\boldsymbol{t}=\mathbf{2}$

$$
\begin{aligned}
s(t) & =(t-2)^{3}(t-6) \\
s^{\prime}(t) & =(t-2)^{3}+(t-6) 3(t-2)^{2} \\
& =(t-2)^{2}[(t-2)+3(t-6)] \\
v(t) & =(t-2)^{2}[t-2+3 t-18] \\
& =(t-2)^{2}[4 t-20]=4(t-2)^{2}[t-5]
\end{aligned}
$$

293. Answer is D.

A particle starts at time $\boldsymbol{t}=\mathbf{0}$ and moves along a number line so that its position, at time $\boldsymbol{t} \geq \mathbf{0}$, is given by $\boldsymbol{x}(\boldsymbol{t})=(\boldsymbol{t}-\mathbf{2})(\boldsymbol{t}-\mathbf{6})^{\mathbf{3}}$ The particle is moving to the left for

$$
\begin{aligned}
& x^{\prime}(t)=(t-2) 3(t-6)^{2}+(t-6)^{3} \\
& x^{\prime}(t)=(t-6)^{2}[3(t-2)+(t-6)] \\
& x^{\prime}(t)=(t-6)^{2}[3 t-6+t-6] \\
& x^{\prime}(t)=(t-6)^{2}[4 t-12] \\
& x^{\prime}(t)=4(t-6)^{2}[t-3]
\end{aligned}
$$

Sketch graph

294. Answer is E.

The position function of a moving particle on the x-axis is given as $s(t)=t^{3}+t^{2}-8 t$ for $\mathbf{0} \leq \boldsymbol{t} \leq \mathbf{1 0}$ For what values of \boldsymbol{t} is the particle $\underbrace{\text { moving to the right }}$?

$$
\begin{aligned}
& s(t)=t^{3}+t^{2}-8 t \\
& v(t)=3 t^{2}+2 t-8 \\
& v(t)=(t+2)(3 t-4) \\
& t=-2 \left\lvert\, t=\frac{4}{3}\right.
\end{aligned}
$$

If $\boldsymbol{t}>\frac{4}{3}$ then the velocity is positive and the particle is moving to the right !
295. Answer is B.

A particle is moving along the \boldsymbol{x}-axis. Its position at time $\boldsymbol{t}>\boldsymbol{0}$ is $\boldsymbol{e}^{\boldsymbol{2} \boldsymbol{t}}$ What is its acceleration when $\boldsymbol{t}=\mathbf{2}$

$$
\begin{aligned}
& s(t)=e^{2-t} \\
& v(t)=e^{2-t}(-1)=-e^{2-t} \\
& a(t)=e^{2-t} \\
& a(2)=e^{2-2}=e^{0}=1
\end{aligned}
$$

296. Answer is C.
297.

A particle moves along the \boldsymbol{x}-axis so that its position at time \boldsymbol{t} is given by
$\boldsymbol{x}(\boldsymbol{t})=4 t^{\mathbf{3}}-\mathbf{3 3} t^{2}+\mathbf{3 0 t}+\mathbf{1 2}$, where \boldsymbol{t} is measured in seconds and \boldsymbol{x} is measured in meters.
a) Determine the velocity, in $\boldsymbol{m} / \boldsymbol{s}$, of the particle at time $\boldsymbol{t}=\mathbf{2}$ seconds
b) Determine the time(s), in seconds, when the particle is stationary
a) $x(t)=4 t^{3}-33 t^{2}+30 t+12$
$v(t)=12 t^{2}-66 t+30$

$$
v(2)=12(2)^{2}-66(2)+30=-54 \mathrm{~m} / \mathrm{sec}
$$

b) $\quad v(t)=12 t^{2}-66 t+30=0 \quad \leftarrow$ particle is stationary

$$
\left.\begin{gathered}
2 t^{2}-11 t+5=0 \\
(2 t-1)(t-5)=0 \\
\hline \hline t=\frac{1}{2}
\end{gathered} \right\rvert\, t=5
$$

298.

A particle moves along the \boldsymbol{x}-axis such that its distance from the origin is given by $\boldsymbol{x}(\boldsymbol{t})=2 \boldsymbol{t}^{2}+\mathbf{6 0 t}$ where \boldsymbol{x} is in centimeters and \boldsymbol{t} is in seconds. When the particle's velocity is $72 \mathrm{~cm} / \mathbf{s e c}$, determine its distance $\boldsymbol{x}(\boldsymbol{t})$ from the origin.

$$
\begin{aligned}
x(t) & =2 t^{2}+60 t \\
v(t)=4 t+60 & =72 \\
4 t & =12 \\
t & =3
\end{aligned}
$$

$$
x(t)=2 t^{2}+60 t
$$

$$
x(3)=2(3)^{2}+60(3)=18+180=198
$$

Distance $\boldsymbol{x}(\boldsymbol{t})$ from the origin when its velocity is $\mathbf{7 2} \mathbf{~ c m} / \mathbf{s e c}$ is 198 cm to the right of the origin.
299.

A particle moves along the x -axis so that its position at time \boldsymbol{t} is $\boldsymbol{x}(\boldsymbol{t})=\mathbf{4} \boldsymbol{t}^{\mathbf{3}}-\mathbf{2 1} \boldsymbol{t}^{\mathbf{2}}+\mathbf{3 0 t}$ where \boldsymbol{t} is measured in seconds, and \boldsymbol{x} is measured in meters.
a) Determine the time(s) when the particle is stopped.
b) Determine when the particle is moving to the left
a) $x(t)=4 t^{3}-21 t^{2}+30 t$

$$
v(t)=12 t^{2}-42 t+30=0 \leftarrow \text { particle stopped }
$$

$$
2 t^{2}-7 t+5=0
$$

$$
(2 t-5)(t-1)=0
$$

$$
\begin{array}{|l|l|}
\hline \hline t=\frac{5}{2} & t=1 \\
\hline
\end{array}
$$

b) $\boldsymbol{v}(\boldsymbol{t})=\mathbf{1 2 t ^ { 2 }} \mathbf{- 4 2 t + 3 0} \leftarrow$ parabola opening up with zero's of $\mathbf{1}$ and $\mathbf{2 . 5}$

$$
12 t^{2}-42 t+30<0 \leftarrow v(t) \text { negative (moving left) } 1<t<\frac{5}{2}
$$

Solution:

Consider graph of position function x

$$
x=4 t^{3}-21 t^{2}+30 t
$$

decreasing \Rightarrow moving left
or

Consider sign of x^{\prime}

$$
x^{\prime}=6(2 t-5)(t-1)<0 \leftarrow \frac{1}{2} \text { mark }
$$

$x^{\prime}<0 \Rightarrow$ moving left
\therefore particle is moving left when

$$
1<t<\frac{5}{2} \quad \leftarrow \frac{1}{2} \operatorname{mark}
$$

300.

A particle moves along the x-axis so that its position at time t is $\boldsymbol{x}(\boldsymbol{t})=\mathbf{2 t ^ { 3 }}-\mathbf{5} \boldsymbol{t}^{2}-\mathbf{4} \boldsymbol{t}+\mathbf{3}$ (\boldsymbol{x} in cm and \boldsymbol{t} in seconds.)
a) At what time(s) is the particle stationary?
b) At what time(s) is the particle moving to the left?

$$
\begin{aligned}
&a) \\
& v(t)= 2 t^{3}-5 t^{2}-4 t+3 \\
& x^{\prime}(t)= 6 t^{2}-10 t-4 \\
& v(t)= 6 t^{2}-10 t-4=0 \\
& 3 t^{2}-5 t-2=0 \\
&(3 t+1)(t-2)=0 \\
& t=-\frac{1}{3}, t=2
\end{aligned}
$$

$$
6 t^{2}-10 t-4<0 \leftarrow \text { moving left }
$$

Sketch parabola opening up with zeros $\boldsymbol{t}=-\frac{1}{3}, \mathbf{2}$ and parabola is negative when

$$
-\frac{1}{3}<t<2
$$

301.

A particle moves along the \boldsymbol{x}-axis so that its position at time \boldsymbol{t} is $\boldsymbol{x}(\boldsymbol{t})=\mathbf{2} \boldsymbol{t}^{\mathbf{3}} \mathbf{- 9} \boldsymbol{t}^{\mathbf{2}}+\mathbf{1 2 t}$ (\boldsymbol{x} in cm and \boldsymbol{t} in seconds)
a) Determine the time(s) when the particle is stopped
b) Determine the velocity of the particle at time $\boldsymbol{t}=\mathbf{3}$ seconds
a) $f(x)=x^{3}-3 x+5$

$$
f^{\prime}(x)=3 x^{2}-3
$$

Equation of the tangent line

$$
f^{\prime}(2)=3(2)^{2}-3=9 \leftarrow \text { slope }
$$

$$
f(2)=2^{3}-3(2)+5=7
$$

$$
\begin{array}{r}
\text { Slope }=\frac{\text { rise }}{\text { run }}=\frac{9}{1}=\frac{y-7}{x-2} \\
y-7=9 x-18 \\
y=9 x-11
\end{array}
$$

b) $f^{\prime}(x)=3 x^{2}-3=0 \quad \leftarrow$ slope $=0$

$$
\begin{aligned}
3 x^{2} & =3 \\
x^{2} & =1 \\
x & = \pm 1
\end{aligned}
$$

302.

A particle moves along the \boldsymbol{x}-axis so that its position at time \boldsymbol{t} is $\boldsymbol{x}(\boldsymbol{t})=\mathbf{2 t} \boldsymbol{t}^{\mathbf{3}} \mathbf{- 9} \boldsymbol{t}^{2}+\mathbf{1 2 t}$ (\boldsymbol{x} in cm and \boldsymbol{t} in seconds)
a) Determine the time(s) when the particle is stopped
b) Determine the velocity of the particle at time $\boldsymbol{t}=\mathbf{3}$ seconds

$$
\begin{gathered}
a) \begin{array}{c}
x(t)=2 t^{3}-9 t^{2}+12 t \\
v(t)=x^{\prime}(t)=6 t^{2}-18 t+12 \\
v(t)=6 t^{2}-18 t+12=0
\end{array} \rightarrow \text { stopped } \\
t^{2}-3 t+2=0 \\
(t-1)(t-2)=0 \\
t=1
\end{gathered}
$$

b) Velocity of the particle at $\boldsymbol{t}=\mathbf{3}$ seconds

$$
v(t)=6 t^{2}-18 t+12
$$

$$
v(3)=6(3)^{2}-18(3)+12
$$

$$
v(3)=12 \mathrm{~cm} / \mathrm{sec}
$$

303.

A particle moves along the x-axis so that its position at time t is $\boldsymbol{x}(\boldsymbol{t})=\mathbf{4} \boldsymbol{t}^{\mathbf{3}}-\mathbf{2 1} \boldsymbol{t}^{2}+\mathbf{1 8 t}+\mathbf{3}$ where \boldsymbol{t} is measured in seconds and \boldsymbol{x} is measured in meters.
a) Determine an equation for the velocity function.
b) Determine the velocity at time $\boldsymbol{t}=\mathbf{2}$
c) Determine the time(s) when the particle is stationary.
a) $x(t)=4 t^{3}-21 t^{2}+18 t+3$

$$
v(t)=12 t^{2}-42 t+18 \quad \leftarrow \text { first derivative }
$$

b) $v(2)=12 t^{2}-42 t+18=12(2)^{2}-42(2)+18=18 m / s$
c) $v(t)=12 t^{2}-42 t+\mathbf{1 8}=\mathbf{0} \leftarrow$ particle is stationary

$$
\begin{array}{r|r|}
2 t^{2}-7 t+3 & =0 \\
(2 t-1)(t-3) & =0
\end{array}
$$

304. A particle moves along the \boldsymbol{x}-axis in such a way that its position at time \boldsymbol{t} is given by $x(t)=3 t^{4}-16 t^{3}+24 t^{2}$ for $-5 \leq t \leq 5$
a) Determine the velocity and acceleration of the particle at time t
b) At what values of \boldsymbol{t} is the particle at rest?
c) At what values of \boldsymbol{t} does the particle change direction?
d) What is the velocity when the acceleration is first zero ?
(a) $\quad v=\frac{d x}{d t}=12 t^{3}-48 t^{2}+48 t=12 t\left(t^{2}-4 t+4\right)=12 t(t-2)^{2}$

$$
a=\frac{d v}{d t}=36 t^{2}-96 t+48=12\left(3 t^{2}-8 t+4\right)=12(3 t-2)(t-2)
$$

(b) The particle is at rest when $v=0$. This occurs when $t=0$ and $t=2$.
(c) The particle changes direction at $t=0$ only.
(d) $\quad a=0$ when $t=\frac{2}{3}$ and $t=2$. The acceleration is first zero at $t=\frac{2}{3}$.

$$
v\left(\frac{2}{3}\right)=12\left(\frac{2}{3}\right)\left(-\frac{4}{3}\right)^{2}=\frac{128}{9}
$$

305. A particle moves along the \boldsymbol{x}-axis in such a way that its position at time \boldsymbol{t} for $\boldsymbol{t} \geq \mathbf{0}$ is given
by $x(t)=\frac{1}{3} t^{3}-3 t^{2}+8 t$
a) Show that at time $\boldsymbol{t}=\mathbf{0}$, the particle is moving to the right.
b) Find all values of \boldsymbol{t} for which the particle is moving to the left.
c) What is the position of the particle at time $\boldsymbol{t}=\mathbf{3}$
d) When $\boldsymbol{t}=\mathbf{3}$, what is the total distance the particle has traveled?
(a) $\quad v=\frac{d x}{d t}=t^{2}-6 t+8$
$v(0)=8>0$ and so the particle is moving to the right at $t=0$.
(b) The particle is moving to the left when $v(t)=t^{2}-6 t+8=(t-4)(t-2)<0$.

Therefore the particle moves to the left for $2<t<4$.
(c) At time $t=3, x=\frac{1}{3}(3)^{3}-3(3)^{2}+8(3)=6$.
(d) The particle changes direction at $t=2$.

$$
\begin{aligned}
& x(0)=0 \\
& x(2)=\frac{1}{3}(2)^{3}-3(2)^{2}+8(2)=\frac{20}{3} \\
& x(3)=6
\end{aligned}
$$

Distance $=(x(2)-x(0))+(x(2)-x(3))=\frac{20}{3}+\frac{2}{3}=\frac{22}{3}$

