LG8&9 Roots and Powers

BUILDING ON

- determining the square root of a positive rational number
- applying the exponent laws for powers with integral bases and whole number exponents
- Any number that can be written as the fraction $\frac{m}{n}$, $n \neq 0$, where m and n are integers, is rational.
- Exponents can be used to represent roots and reciprocals of rational numbers.
- The exponent laws can be extended to include powers with rational and variable bases, and rational exponents.

NEW VOCABULARY

irrational number real number entire radical mixed radical

Estimating Roots

Make Connections

Since $3^2 = 9$, 3 is a square root of 9.

We write: $3 = \sqrt{9}$

Since $3^3 = 27$, 3 is the cube root of 27.

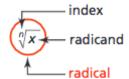
We write: $3 = \sqrt[3]{27}$

Since $3^4 = 81$, 3 is a fourth root of 81.

We write: $3 = \sqrt[4]{81}$

How would you write 5 as a square root?

A cube root? A fourth root?



Irrational Numbers

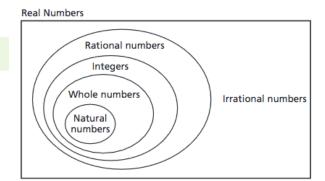
Example 1

Classifying Numbers

Tell whether each number is rational or irrational. Explain how you know.

a)
$$-\frac{3}{5}$$

a)
$$-\frac{3}{5}$$
 b) $\sqrt{14}$ **c**) $\sqrt[3]{\frac{8}{27}}$



Example 2

Ordering Irrational Numbers on a Number Line

Use a number line to order these numbers from least to greatest.

$$\sqrt[3]{13}$$
, $\sqrt{18}$, $\sqrt{9}$, $\sqrt[4]{27}$, $\sqrt[3]{-5}$

Mixed and Entire Radicals

Example 1

Simplifying Radicals Using Prime Factorization

Simplify each radical.

a) $\sqrt{80}$

b) ³√144

c) ⁴√162

Example 2

Writing Radicals in Simplest Form

Write each radical in simplest form, if possible.

- **a**) $\sqrt[3]{40}$
- **b**) $\sqrt{26}$
- c) $\sqrt[4]{32}$

Example 3

Writing Mixed Radicals as Entire Radicals

Write each mixed radical as an entire radical.

- a) $4\sqrt{3}$
- **b)** $3\sqrt[3]{2}$ **c)** $2\sqrt[5]{2}$

Fractional Exponents and Radicals

Example 1

Evaluating Powers of the Form $a^{\frac{1}{n}}$

Evaluate each power without using a calculator.

a)
$$27^{\frac{1}{3}}$$

b)
$$0.49^{\frac{1}{2}}$$

c)
$$(-64)^{\frac{1}{3}}$$

a)
$$27^{\frac{1}{3}}$$
 b) $0.49^{\frac{1}{2}}$ **c)** $(-64)^{\frac{1}{3}}$ **d)** $\left(\frac{4}{9}\right)^{\frac{1}{2}}$

Example 2

Rewriting Powers in Radical and Exponent Form

- a) Write $40^{\frac{2}{3}}$ in radical form in 2 ways.
- **b)** Write $\sqrt{3^5}$ and $(\sqrt[3]{25})^2$ in exponent form.

Example 3

Evaluating Powers with Rational Exponents and Rational Bases

Evaluate.

- **a)** $0.04^{\frac{3}{2}}$
- **b)** $27^{\frac{4}{3}}$
- c) $(-32)^{0.4}$
- **d**) 1.8^{1.4}

Example 4

Applying Rational Exponents

Biologists use the formula $b = 0.01m^{\frac{2}{3}}$ to estimate the brain mass, b kilograms, of a mammal with body mass m kilograms. Estimate the brain mass of each animal.

- a) a husky with a body mass of 27 kg
- b) a polar bear with a body mass of 200 kg

Negative Exponents and Reciprocals

Example 1

Evaluating Powers with Negative Integer Exponents

Evaluate each power.

a)
$$3^{-2}$$
 b) $\left(-\frac{3}{4}\right)^{-3}$

Example 2

Evaluating Powers with Negative Rational Exponents

Evaluate each power without using a calculator.

a)
$$8^{-\frac{2}{3}}$$

b)
$$\left(\frac{9}{16}\right)^{\frac{3}{2}}$$

Applying the Exponent Laws

Recall the exponent laws for integer bases and whole number exponents.

 $a^m \cdot a^n = a^{m+n}$ Product of powers:

 $a^m \div a^n = a^{m-n}, a \neq 0$ Quotient of powers:

Power of a power: $(a^m)^n = a^{mn}$ Power of a product: $(ab)^m = a^m b^m$

 $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, b \neq 0$ Power of a quotient:

Example 1

Simplifying Numerical Expressions with Rational Number Bases

Simplify by writing as a single power. Explain the reasoning.

a)
$$0.3^{-3} \cdot 0.3^{5}$$

$$\mathbf{b}) \left[\left(-\frac{3}{2} \right)^{-4} \right]^2 \cdot \left[\left(-\frac{3}{2} \right)^2 \right]^3$$

c)
$$\frac{(1.4^3)(1.4^4)}{1.4^{-2}}$$

c)
$$\frac{(1.4^3)(1.4^4)}{1.4^{-2}}$$
 d) $\left(\frac{7^{\frac{2}{3}}}{7^{\frac{1}{3}} \cdot 7^{\frac{5}{3}}}\right)^6$

Example 2 **Simplifying Algebraic Expressions with Integer Exponents**

Simplify. Explain the reasoning.

a)
$$(x^3y^2)(x^2y^{-4})$$

b)
$$\frac{10a^5b^3}{2a^2b^{-2}}$$

Example 3 **Simplifying Algebraic Expressions with Rational Exponents**

Simplify. Explain the reasoning.

a)
$$(8a^3b^6)^{\frac{1}{3}}$$

b)
$$(x^{\frac{3}{2}}y^2)(x^{\frac{1}{2}}y^{-1})$$

c)
$$\frac{4a^{-2}b^{\frac{2}{3}}}{2a^{2}b^{\frac{1}{3}}}$$

c)
$$\frac{4a^{-2}b^{\frac{2}{3}}}{2a^{2}b^{\frac{1}{3}}}$$
 d) $\left(\frac{100a}{25a^{5}b^{-\frac{1}{2}}}\right)^{\frac{1}{2}}$

Example 4

Solving Problems Using the Exponent Laws

A sphere has volume 425 m³.

What is the radius of the sphere to the nearest tenth of a metre?