

Agenda:

Topic 1

Example 1

Completing the Square

Example: Convert from Standard Form to Vertex Form.

$$f(x) = x^2 + 6x + 5$$

1. Group the 1st 2 terms

$$y = \left(x^2 + 6x\right) + 5$$

2. Add and subtract the square of half the coefficient of the x-term (inside the brackets)

$$y = (x^2 + 6x + 9 - 9) + 5$$

3. Group the trinomial

$$y = (x^2 + 6x + 9) - 9 + 5$$

4. Factor and Simplify

$$y = (x+3)^2 - 9 + 5$$

$$y = \left(x+3\right)^2 - 4$$

Try: Convert each of the following to vertex from standard form:

a)
$$f(x) = x^2 + 16x + 20$$
 b) $f(x) = 3x^2 - 12x - 9$

$$f(x) = 3x^2 - 12x - 9$$

Example 2

Convert to Vertex Form and Verify

Example: Convert the function $y = 4x^2 - 28x - 23$ to vertex form and verify that the two forms are equivalent.

1. Complete the square to convert to vertex form (like example 1)

$$y = 4x^{2} - 28x - 23$$

 $y = 4(x^{2} - 7x) - 23$ Factor out 4

$$y = 4\left(x^2 - 7x + \frac{49}{4} - \frac{49}{4}\right) - 23$$

$$y = 4\left[\left(x^2 - 7x + \frac{49}{4}\right) - \frac{49}{4}\right] - 23$$
 Group trinomial

$$y = 4\left[\left(x - \frac{7}{2}\right)^2 - \frac{49}{4}\right] - 23$$

Factor trinomial

Example 2 cont.

Completing the square, cont.

$$y = 4\left(x - \frac{7}{2}\right)^2 - 4\left(\frac{49}{4}\right) - 23$$

$$y = 4\left(x - \frac{7}{2}\right)^2 - 49 - 23$$

$$y = 4\left(x - \frac{7}{2}\right)^2 - 72$$

2. Work backward to confirm (FOIL and simplify).

$$y = 4\left(x - \frac{7}{2}\right)^2 - 72$$

$$y = 4\left(x - \frac{7}{2}\right)\left(x - \frac{7}{2}\right) - 72$$
 FOIL trinomial

$$y = 4\left(x^2 - \frac{7}{2}x - \frac{7}{2}x + \frac{49}{4}\right) - 72$$

Example 2 cont.

2. Work backward, cont.

$$y = 4\left(x^2 - 7x + \frac{49}{4}\right) - 72$$
$$y = 4x^2 - 28x + 49 - 72$$

collect like terms

 $y = 4x^2 - 28x - 23$ result is the

original function

multiply coefficient through and simplify

<u> </u>	

Try: Convert into vertex form and verify that the two forms are equivalent.

a)
$$y = -3x^2 - 27x + 13$$

Example 3

Determine the Vertex of a Quadratic Function by Completing the Square

Example: For the Function: $y = 5x^2 + 30x + 41$

- a) Complete the Square to find the vertex
- b) Verify the releationship between and and
- c) Use the relationship from part b) to find the vertex. Compare to the answer from part a)
- a) Complete the Square to find the vertex $y = 5x^2 + 30x + 41$ $y = 5(x^2 + 6x) + 41$ $y = 5(x^2 + 6x + 9 - 9) + 41$ $y = 5[(x^2 + 6x + 9) - 9] + 41$

 <u> </u>

Example 3 cont.

a) Complete the Square (cont.)

$$y = 5[(x+3)^{2} - 9] + 41$$
$$y = 5(x+3)^{2} - 45 + 41$$

$$y = 5(x+3)^2 - 4$$

- vertex (-3, -4)
- graph opens up (is positive)
- · vertex is a minimum
- b) Look back at the steps in a)

$$y = 5x^{2} + 30x + 41$$
 $y = ax^{2} + bx + 41$
 $y = 5(x^{2} + 6x) + 41$ b divided by a
 $6 \text{ is } \frac{30}{5}, \text{ or } \frac{b}{a}$
 $y = 5(x + 3)^{2} - 4$ $y = 5(x - p)^{2} - 4$ $3 \text{ is half of } 6, \text{ or half of } \frac{b}{a} \text{ or } \frac{b}{2a}$

Example 3 cont.

- c) Determine the coordinates of the vertex
 - 1. Find thex- coordinate using $x = -\frac{b}{2a}$ $x = -\frac{30}{2(5)}$
 - $x = -\frac{30}{10}$
 - x = -3
 - 2. Find the y-coordinate by substitution

$$y = 5x^2 + 30x + 41$$

$$y = 5(-3)^2 + 30(-3) + 41$$

$$y = 45 - 90 + 41$$

$$y = -4$$

The vertex is (-3, -4)

**this is the same as the vertex we found in part a)

·

Try: For the function $y = 3x^2 + 30x + 41$

- a) Complete the square to find the vertex b) Use $x = -\frac{b}{2a}$ and the standard form to find the vertex. Compare your 2 answers.

Example 4

Write a Quadratic Model Function

Example: Last year photo sessions were \$10 and 400 sessions were booked. It is estimated that for every \$1 increase in price, 20 fewer sessions will be booked.

a) Write a function to model the situation

 <u> </u>

Example 4 cont.

b) Complete to find the maximum revenue and the price that brings that revenue

$$R = -20n^2 + 200n + 4000$$

$$R = -20(n^2 + 10n) + 4000$$

$$R = -20(n^2 + 10n - 25 - 25) + 4000$$

$$R = -20[(n^2 + 10n - 25) - 25] + 4000$$

$$R = -20[(n-5)^2 - 25] + 4000$$

$$R = -20(n-5)^2 + 500 + 4000$$

$$R = -20(n-5)^2 + 4500$$

The vertex is (5, 4500). The maximum revenue will be \$4500 when n = 5 (when there are 5 price increases of \$1). So the price should go up \$5 to \$15.

Example 4 cont.

b) Verify the solution by graphing

- Enter the function into y= and adjust the window.
 Then find the maximum like you did in learning guide 5
- 2. Press 2nd TRACE 4 (maximum)
 move the cursor to the left side of the
 maximum and press ENTER then move
 the cursor to the right side of the
 maximum and press ENTER
- 3. The vertex is at (5, 4500). This verifies that the maximum revenue is \$4500 with 5 price increases or a session fee of \$15.

Example 4 cont.

d) What assumptions were made in creating and using this model function?

It was assumed that:

· price affects revenue in a predictable way

Other factors could affect the revenue but were not considered, such as:

- advertising
- word of mouth
- ...

	<u> </u>

Try: A sporting goods store sells water bottles for \$8. At this price they sell about 100 bottles per week. Research says that for every \$2 increase in price, they can expect to sell 5 fewer bottles.

- a) Write a quadratic to represent this situation
- b) Find the maximum revenue and the selling price
- c) Verify the solution
- d) What were your assumptions?